Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks

Abstract

Covalent organic frameworks (COFs) offer a new strategy for assembling organic semiconductors into robust networks with atomic precision and long-range order. General methods for COF synthesis will allow complex building blocks to be incorporated into these emerging materials. Here we report a new Lewis acid-catalysed protocol to form boronate esters directly from protected catechols and arylboronic acids. This transformation also provides crystalline boronate ester-linked COFs from protected polyfunctional catechols and bis(boronic acids). Using this method, we prepared a new COF that features a square lattice composed of phthalocyanine macrocycles joined by phenylene bis(boronic acid) linkers. The phthalocyanines stack in an eclipsed fashion within the COF to form 2.3 nm pores that run parallel to the stacked chromophores. The material's broad absorbance over the solar spectrum, potential for efficient charge transport through the stacked phthalocyanines, good thermal stability and the modular nature of COF synthesis, show strong promise for applications in organic photovoltaic devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BF3·OEt2 catalyses the formation of 2-phenyl-1,3,2-benzodioxaborole (3) from phenylboronic acid (1) and catechol acetonide (2).
Figure 2: Lewis acid-catalysed boronate ester formation conditions provide an eclipsed 2D COF that consists of phthalocyanines linked by PBBA.
Figure 3: X-ray diffraction confirms that the Pc-PBBA COF is a crystalline material with an eclipsed 2D structure.
Figure 4: Scanning electron micrographs of the Pc-PBBA COF display two crystal morphologies.
Figure 5: Nitrogen-adsorption isotherms suggest that the Pc-PBBA COF is microporous.
Figure 6: Pc-PBBA COF absorbs light over a broad range of the visible and near-infrared spectral regions.

Similar content being viewed by others

References

  1. Anthony, J. E. Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 106, 5028–5048 (2006).

    Article  CAS  Google Scholar 

  2. Park, J.-S. et al. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl. Phys. Lett. 95, 013503 (2009).

    Article  Google Scholar 

  3. Subramanian, V. et al. Progress toward development of all-printed RFID tags: materials, processes, and devices. Proc. IEEE 93, 1330–1338 (2005).

    Article  CAS  Google Scholar 

  4. Müllen, K. & Scherf, U. Organic Light Emitting Devices: Synthesis, Properties and Applications (Wiley-VCH, 2006).

    Google Scholar 

  5. Thomas, S. W., Joly, G. D. & Swager, T. M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107, 1339–1386 (2007).

    Article  CAS  Google Scholar 

  6. Briseno, A. L. et al. Patterning organic single-crystal transistor arrays. Nature 444, 913–917 (2006).

    Article  CAS  Google Scholar 

  7. Brabec, C. J. D., Parisi, J. & Sariciftci, N. S. Organic Photovoltaics Concepts and Realization (Springer-Verlag, 2003).

    Book  Google Scholar 

  8. Lloyd, M. T., Anthony, J. E. & Malliaras, G. G. Photovoltaics from soluble small molecules. Mater. Today 10, 34–41 (2007).

    Article  CAS  Google Scholar 

  9. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article  CAS  Google Scholar 

  10. Anthony, J. E., Brooks, J. S., Eaton, D. L. & Parkin, S. R. Functionalized pentacene: improved electronic properties from control of solid-state order. J. Am. Chem. Soc. 123, 9482–9483 (2001).

    Article  CAS  Google Scholar 

  11. Mas-Torrent, M. et al. Correlation between crystal structure and mobility in organic field-effect transistors based on single crystals of tetrathiafulvalene derivatives. J. Am. Chem. Soc. 126, 8546–8553 (2004).

    Article  CAS  Google Scholar 

  12. Desiraju, G. R. Cryptic crystallography. Nature Mater. 1, 77–79 (2002).

    Article  CAS  Google Scholar 

  13. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  Google Scholar 

  14. Tilford, R. W., Gemmill, W. R., zur Loye, H. C. & Lavigne, J. J. Facile synthesis of a highly crystalline, covalently linked porous boronate network. Chem. Mater. 18, 5296–5301 (2006).

    Article  CAS  Google Scholar 

  15. Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008).

    Article  CAS  Google Scholar 

  16. Furukawa, H. & Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009).

    Article  CAS  Google Scholar 

  17. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. L. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem. Int. Ed. 47, 8826–8830 (2008).

    Article  CAS  Google Scholar 

  18. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. L. A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew. Chem. Int. Ed. 48, 5439–5442 (2009).

    Article  CAS  Google Scholar 

  19. Uribe-Romo, F. J. et al. A crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc. 131, 4570–4571 (2009).

    Article  CAS  Google Scholar 

  20. Hunt, J. R., Doonan, C. J., LeVangie, J. D., Côté, A. P. & Yaghi, O. M. Reticular synthesis of covalent organic borosilicate frameworks. J. Am. Chem. Soc. 130, 11872–11873 (2008).

    Article  CAS  Google Scholar 

  21. Tilford, R. W., Mugavero, S. J., Pellechia, P. J. & Lavigne, J. J. Tailoring microporosity in covalent organic frameworks. Adv. Mater. 20, 2741–2748 (2008).

    Article  CAS  Google Scholar 

  22. Tong, X., Bailey-Salzman, R. F., Wei, G. & Forrest, S. R. Inverted small molecule organic photovoltaic cells on reflective substrates. Appl. Phys. Lett. 93, 173304 (2008).

    Article  Google Scholar 

  23. Pfuetzner, S., Meiss, J., Petrich, A., Riede, M. & Leo, K. Thick C60:ZnPc bulk heterojunction solar cells with improved performance by film deposition on heated substrates. Appl. Phys. Lett. 94, 253303 (2009).

    Article  Google Scholar 

  24. Reddy, P. Y. et al. Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical zinc phthalocyanine. Angew. Chem. Int. Ed. 46, 373–376 (2007).

    Article  CAS  Google Scholar 

  25. Moreira, L. M. et al. Photodynamic therapy: porphyrins and phthalocyanines as photosensitizers. Aust. J. Chem. 61, 741–754 (2008).

    Article  CAS  Google Scholar 

  26. de la Torre, G., Vaquez, P., Agullo-Lopez, F. & Torres, T. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem. Rev. 104, 3723–3750 (2004).

    Article  CAS  Google Scholar 

  27. Kadish, K. M., Smith, K. M. & Guilard, R. The Porphyrin Handbook Vol. 15–20 (Academic, 2002).

    Google Scholar 

  28. Seltzman, H. H., Fleming, D. N., Hawkins, G. D. & Carroll, F. I. Facile synthesis and stabilization of 2-arachidonylglycerol via its 1,3-phenylboronate ester. Tetrahedron Lett. 41, 3589–3592 (2000).

    Article  CAS  Google Scholar 

  29. Côté, A. P., El-Kaderi, H. M., Furukawa, H., Hunt, J. R. & Yaghi, O. M. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J. Am. Chem. Soc. 129, 12914–12915 (2007).

    Article  Google Scholar 

  30. Baugh, S. D. P., Yang, Z. W., Leung, D. K., Wilson, D. M. & Breslow, R. Cyclodextrin dimers as cleavable carriers of photodynamic sensitizers. J. Am. Chem. Soc. 123, 12488–12494 (2001).

    Article  CAS  Google Scholar 

  31. Vanderpol, J. F. et al. A polymer with the mesomorphic order of liquid–crystalline phthalocyanines. Macromolecules 23, 155–162 (1990).

    Article  CAS  Google Scholar 

  32. Ruf, M., Lawrence, A. M., Noll, B. C. & Pierpont, C. G. Silicon and zinc coordination to peripheral catechol sites of (2,3,9,10,16,17,23,24-octahydroxyphthalocyaninato)nickel(II). Phthalocyanine coordination chemistry at the edge. Inorg. Chem. 37, 1992–1999 (1998).

    Article  CAS  Google Scholar 

  33. Materials Studio Release Notes v.4.4 (Accelrys Software, San Diego, 2008).

  34. Sichel, E. K., Miller, R. E., Abrahams, M. S. & Buiocchi, C. J. Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride. Phys. Rev. B 13, 4607–4611 (1976).

    Article  CAS  Google Scholar 

  35. Liang, J. & Shimizu, G. K. H. Crystalline zinc diphosphonate metal–organic framework with three-dimensional microporosity. Inorg. Chem. Commun. 46, 10449–10451 (2007).

    Article  CAS  Google Scholar 

  36. Thallapally, P. K. et al. Carbon dioxide capture in a self-assembled organic nanochannels. Chem. Mater. 19, 3355–3357 (2007).

    Article  CAS  Google Scholar 

  37. Mulfort, K. L., Wilson, T. M., Wasielewski, M. R. & Hupp, J. T. Framework reduction and alkali-metal doping of a triply catenating metal–organic framework enhances and then diminishes H2 uptake. Langmuir 25, 503–508 (2009).

    Article  CAS  Google Scholar 

  38. Svec, F., Germain, J. & Fréchet, J. M. J. Nanoporous polymers for hydrogen storage. Small 5, 1098–1111 (2009).

    Article  Google Scholar 

  39. Yuan, S. W., Kirklin, S., Dorney, B., Liu, D. J. & Yu, L. P. Nanoporous polymers containing stereocontorted cores for hydrogen storage. Macromolecules 42, 1554–1559 (2009).

    Article  CAS  Google Scholar 

  40. Noro, S. et al. Selective gas adsorption in one-dimensional, flexible Cu-II coordination polymers with polar units. Chem. Mater. 21, 3346–3355 (2009).

    Article  CAS  Google Scholar 

  41. Barrett, E. P., Joyner, L. G. & Halenda, P. P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (2002).

    Article  Google Scholar 

  42. Orilall, M. C. et al. One-pot synthesis of platinum-based nanoparticles incorporated into mesoporous niobium oxide–carbon composites for fuel cell electrodes. J. Am. Chem. Soc. 131, 9389–9395 (2009).

    Article  CAS  Google Scholar 

  43. Tant, J. et al. Liquid crystalline metal-free phthalocyanines designed for charge and exciton transport. J. Phys. Chem. B 109, 20315–20323 (2005).

    Article  CAS  Google Scholar 

  44. Cornil, J., dos Santos, D. A., Crispin, X., Silbey, R. & Brédas, J. L. Influence of interchain interactions on the absorption and luminescence of conjugated oligomers and polymers: a quantum-chemical characterization. J. Am. Chem. Soc. 120, 1289–1299 (1998).

    Article  CAS  Google Scholar 

  45. Huang, X. et al. Self-assembled nanowire networks of aryloxy zinc phthalocyanines based on Zn–O coordination. Langmuir 23, 5167–5172 (2007).

    Article  CAS  Google Scholar 

  46. McKeown, N. B., Makhseed, S. & Budd, P. M. Phthalocyanine-based nanoporous network polymers. Chem. Commun. 2780–2781 (2002).

  47. Ivanov, A. V., Svinareva, P. A., Zhukov, I. V. Tomilova, L. G. & Zefirov, N. S. New phthalocyanine complexes based on 4,5-isopropylidenedioxyphthalonitrile. Russ. Chem. Bull. Int. Ed. 52, 1562–1566 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by start-up funds provided by Cornell University and the National Science Foundation (NSF)-funded Centers for Chemical Innovation Phase I Center for Molecular Interfacing (CHE-0847926). We also made use of the Cornell Center for Materials Research facilities with support from the NSF Materials Research Science and Engineering Centers program (DMR-0520404). E.L.S. acknowledges the award of the American Competitiveness in Chemistry postdoctoral fellowship from the NSF (CHE-0936988). We thank H. Sai and N. Hoepker for instrument assistance and A. Côté and A. Beeby for discussions.

Author information

Authors and Affiliations

Authors

Contributions

Both authors conceived the project, performed and interpreted the results of the experiments and wrote the manuscript.

Corresponding author

Correspondence to William R. Dichtel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1380 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spitler, E., Dichtel, W. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nature Chem 2, 672–677 (2010). https://doi.org/10.1038/nchem.695

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.695

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing