Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cascading transformations within a dynamic self-assembled system

Abstract

Molecular subcomponents such as phosphate groups are often passed between biomolecules during complex signalling cascades, the flow of which define the motion of the machinery of life. Here, we show how an abiological system consisting of organic subcomponents knitted together by metal-ion coordination can respond to simple signals in complex ways. A CuI3 helicate transformed into its ZnII2CuI analogue following the addition of zinc(II), and the ejected copper(I) went on to induce the self-assembly of a CuI2 helicate from other free subcomponents present in solution. The addition of an additional subcomponent, 8-aminoquinoline, resulted in the formation of a third, more stable CuI3 helicate, requiring the destruction of both the ZnII2CuI and CuI2 helicates to scavenge sufficient CuI for the new structure. This system thus demonstrates two examples in which the application of one signal provokes two distinct responses involving the creation or destruction of complex assemblies as the system seeks thermodynamic equilibrium following perturbation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the transformations in a dynamic self-assembled system.
Figure 2: Syntheses of homometallic double helicate 1 and heterometallic double helicate 2.
Figure 3: Crystal structures of 1 and 2: C, grey; N, lilac; O, red: Cu, yellow: Zn, blue.
Figure 4: Self-assembling system in which the addition of one signal (ZnII or 8-aminoquinoline) induced two distinct transformations.
Figure 5: 1H NMR spectra of the three states of the complex self-assembling system shown in Fig. 4.

Similar content being viewed by others

References

  1. Ludlow, R. F. & Otto, S. Systems Chemistry. Chem. Soc. Rev. 37, 101–108 (2007).

    Article  Google Scholar 

  2. Lehn, J.-M. Programmed chemical systems: multiple subprograms and multiple processing/expression of molecular information. Chem. Eur. J. 6, 2097–2102 (2000).

    Article  CAS  Google Scholar 

  3. Lee, D. H., Severin, K. & Ghadiri, M. R. Autocatalytic networks: the transition from molecular self-replication to molecular ecosystems. Curr. Opin. Chem. Biol. 1, 491–496 (1997).

    Article  CAS  Google Scholar 

  4. Jullien, L., Lemarchand, A., Charier, S., Ruel, O. & Baudin, J. B. Two-site molecules as a road for engineering complexity in chemical systems. J. Phys. Chem. B 107, 9905–9917 (2003).

    Article  CAS  Google Scholar 

  5. Kindermann, M., Stahl, I., Reimold, M., Pankau, W. M. & von Kiedrowski, G. Systems chemistry: kinetic and computational analysis of a nearly exponential organic replicator. Angew. Chem. Int. Ed. 44, 6750–6755 (2005).

    Article  CAS  Google Scholar 

  6. Mukhopadhyay, P., Zavalij, P. Y. & Isaacs, L. High fidelity kinetic self-sorting in multi-component systems based on guests with multiple binding epitopes. J. Am. Chem. Soc. 128, 14093–14102 (2006).

    Article  CAS  Google Scholar 

  7. Sarma, R. J. & Nitschke, J. R. Self-assembly in systems of subcomponents: simple rules, subtle consequences. Angew. Chem. Int. Ed. 47, 377–380 (2008).

    Article  CAS  Google Scholar 

  8. Severin, K. The advantage of being virtual-target-induced adaptation and selection in dynamic combinatorial libraries. Chem. Eur. J. 10, 2565–2580 (2004).

    Article  CAS  Google Scholar 

  9. Gomperts, B., Kramer, I. & Tatham, P. Signal Transduction (Academic Press, 2002).

    Book  Google Scholar 

  10. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

    Article  CAS  Google Scholar 

  11. de Silva, A. P. & Uchiyama, S. Molecular logic and computing. Nature Nanotech. 2, 399–410 (2007).

    Article  CAS  Google Scholar 

  12. Gupta, T. & van der Boom, M. E. Redox-active monolayers as a versatile platform for integrating Boolean logic gates. Angew. Chem. Int. Ed. 47, 5322–5326 (2008).

    Article  CAS  Google Scholar 

  13. von Delius, M., Geertsema, E. M. & Leigh, D. A. A synthetic small molecule that can walk down a track. Nature Chem. 2, 96–101 (2010).

    Article  CAS  Google Scholar 

  14. Badjic, J. D., Balzani, V., Credi, A., Silvi, S. & Stoddart, J. F. A molecular elevator. Science 303, 1845–1849 (2004).

    Article  CAS  Google Scholar 

  15. Collin, J.-P., Dietrich-Buchecker, C., Gaviña, P., Jimenez-Molero, M. C. & Sauvage, J.-P. Shuttles and muscles: linear molecular machines based on transition metals. Acc. Chem. Res. 34, 477–487 (2001).

    Article  CAS  Google Scholar 

  16. Schalley, C. A., Beizai, K. & Vogtle, F. On the way to rotaxane-based molecular motors: studies in molecular mobility and topological chirality. Acc. Chem. Res. 34, 465–476 (2001).

    Article  CAS  Google Scholar 

  17. Eelkema, R. et al. Molecular machines: nanomotor rotates microscale objects. Nature 440, 163 (2006).

    Article  CAS  Google Scholar 

  18. de Silva, A. P. & McClenaghan, N. D. Molecular-scale logic gates. Chem. Eur. J. 10, 574–586 (2004).

    Article  Google Scholar 

  19. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  20. Credi, A., Balzani, V., Langford, S. J. & Stoddart, J. F. Logic operations at the molecular level. An XOR gate based on a molecular machine. J. Am. Chem. Soc. 119, 2679–2681 (1997).

    Article  CAS  Google Scholar 

  21. Petitjean, A., Kyrisakas, N. & Lehn, J.-M. Ion-triggered multistate molecular switching device based on regioselective coordination-controlled ion binding. Chem. Eur. J. 11, 6818–6828 (2005).

    Article  CAS  Google Scholar 

  22. Schmittel, M. & Mahata, K. Multicomponent assembly of heterometallic isosceles triangles. Inorg. Chem. 3, 822–824 (2009).

    Article  Google Scholar 

  23. Champin, B., Sartor, V. & Sauvage, J.-P. A highly rigid ditopic conjugate with orthogonal coordination axes and its zinc(II) and copper(I) complexes. New J. Chem. 32, 1048–1054 (2008).

    Article  CAS  Google Scholar 

  24. Dietrich-Buchecker, C. O. et al. Quantitative formation of [2]catenanes using copper(I) and palladium(II) as templating and assembling centers: then entwining route and the threading approach. J. Am. Chem. Soc. 125, 5717–5725 (2003).

    Article  CAS  Google Scholar 

  25. Marquis, A. et al. Messages in molecules: ligand/cation coding and self-recognition in a constitutionally dynamic system of heterometallic double helicates. Chem. Eur. J. 12, 5623–5641 (2006).

    Article  Google Scholar 

  26. Riis-Johannessen, T., Harding, L. P., Jeffery, J. C., Moon, R. & Rice, C. R. Allosteric derpogramming of a trinuclear heterometallic helicate. Dalton Trans. 1577–1587 (2007).

  27. Canard, G. & Piguet, C. The origin of the suprising stabilities of highly charged self-assembled polymetallic complexes in solution. Inorg. Chem. 46, 3511–3522 (2007).

    Article  CAS  Google Scholar 

  28. Albrecht, M., Liu, Y., Zhu, S. S., Schalley, C. A. & Frohlich, R. Self-assembly of heterodinuclear triple-stranded helicates: control by coordination number and charge. Chem. Commun. 1195–1197 (2009).

  29. Hahn, F. E., Offermann, M., Isfort, C. S., Pape, T. & Fröhlich, R. Heterobimetallic triple-stranded helicates with directional benzene-o-dithiol catechol ligands. Angew. Chem. Int. Ed. 47, 6794–6797 (2008).

    Article  CAS  Google Scholar 

  30. Christinat, N., Scopelliti, R. & Severin, K. Multicomponent assembly of boronic acid based macrocycles and cages. Angew. Chem. Int. Ed. 47, 1848–1852 (2008).

    Article  CAS  Google Scholar 

  31. Pentecost, C. D. et al. A molecular Solomon link. Angew. Chem. Int. Ed. 46, 218–222 (2007).

    Article  CAS  Google Scholar 

  32. Hutin, M., Franz, R. & Nitschke, J. R. A dynamic tricopper helicate. Chem. Eur. J. 12, 4077–4082 (2006).

    Article  CAS  Google Scholar 

  33. Campbell, V. E. et al. Interplay of interactions governing the dynamic conversions of acyclic and macrocyclic helicates. Chem. Eur. J. 15, 6138–6142 (2009).

    Article  CAS  Google Scholar 

  34. Rosen, B. M. et al. The disproportionation of Cu(I)X mediated by ligand and solvent into Cu(0) and Cu(II)X-2 and its implications for SET-LRP. J. Polym. Sci. Pol. Chem. 47, 5606–5628 (2009).

    Article  CAS  Google Scholar 

  35. Funeriu, D. P., Lehn, J.-M., Fromm, K. M. & Fenske, D. Multiple expression of molecular information: enforced generation of different supramolecular inorganic architectures by processing of the same ligand information through specific coordination algorithms. Chem. Eur. J. 6, 2103–2111 (2000).

    Article  CAS  Google Scholar 

  36. Piguet, C., Bernardinelli, G., Williams, A. F. & Bocquet, B. Formation of the first isomeric [2]catenates by self-assembly about two different metal ions. Angew. Chem. Int. Ed. 34, 582–584 (1995).

    Article  CAS  Google Scholar 

  37. Stulz, E., Scott, S. M., Bond, A. D., Teat, S. J. & Sanders, J. K. M. Selection and amplification of mixed-metal porphyrin cages from dynamic combinatorial libraries. Chem. Eur. J. 9, 6039–6048 (2003).

    Article  CAS  Google Scholar 

  38. Schultz, D. & Nitschke, J. R. Dynamic covalent and supramolecular direction of the synthesis and reassembly of copper(I) complexes. Proc. Natl Acad. Sci. USA 102, 11191–11195 (2005).

    Article  CAS  Google Scholar 

  39. Schultz, D. & Nitschke, J. R. Designing multistep transformations using the Hammett equation: transimination on a copper(I) template. J. Am. Chem. Soc. 128, 9887–9892 (2006).

    Article  CAS  Google Scholar 

  40. Schultz, D. & Nitschke, J. R. Kinetic and thermodynamic selectivity in subcomponent substitution. Chem. Eur. J. 13, 3660–3665 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by an ERA-chemistry collaborative grant. J.R.N. acknowledges financial support from the Walters-Kundert Charitable Trust, the US Army Research Office and Marie Curie Intra-European Fellowship Scheme of the 7th European Framework Program (XdH). Mass spectra were provided by the UK Engineering and Physical Sciences Research Council National MS Service Centre at Swansea.

Author information

Authors and Affiliations

Authors

Contributions

J.R.N. conceived the study. V.E.C., J.R.N. and I.H. designed and debugged the experiments. N.D. and X.H. synthesized compound A. V.E.C. synthesized and characterized compounds 1 and 2. V.E.C. and N.D. obtained X-ray quality crystals of 1 and 2. B.K. and I.H. analysed the crystallographic data. V.E.C., J.R.N. and I.H. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Ivan Huc or Jonathan R. Nitschke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2769 kb)

Supplementary information

Crystallographic data for helicate 1 (CIF 60 kb)

Supplementary information

Crystallographic data for helicate 2 (CIF 140 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, V., de Hatten, X., Delsuc, N. et al. Cascading transformations within a dynamic self-assembled system. Nature Chem 2, 684–687 (2010). https://doi.org/10.1038/nchem.693

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.693

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing