Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural evolution during the reduction of chemically derived graphene oxide

Abstract

The excellent electrical, optical and mechanical properties of graphene have driven the search to find methods for its large-scale production, but established procedures (such as mechanical exfoliation or chemical vapour deposition) are not ideal for the manufacture of processable graphene sheets. An alternative method is the reduction of graphene oxide, a material that shares the same atomically thin structural framework as graphene, but bears oxygen-containing functional groups. Here we use molecular dynamics simulations to study the atomistic structure of progressively reduced graphene oxide. The chemical changes of oxygen-containing functional groups on the annealing of graphene oxide are elucidated and the simulations reveal the formation of highly stable carbonyl and ether groups that hinder its complete reduction to graphene. The calculations are supported by infrared and X-ray photoelectron spectroscopy measurements. Finally, more effective reduction treatments to improve the reduction of graphene oxide are proposed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology of rGO and the structure of defects formed during thermal annealing.
Figure 2: Concentration of different functional groups in rGO.
Figure 3: Formation energies and structures of defects in rGO.
Figure 4: In-situ transmission infrared and XPS spectra of rGO.
Figure 5: Improvement in reduction efficiency on annealing of rGO in a hydrogen atmosphere.

Similar content being viewed by others

References

  1. Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

    Article  CAS  Google Scholar 

  2. Szabó, T. et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740–2749 (2006).

    Article  Google Scholar 

  3. Wang, X., Zhi, L. & Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2007).

    Article  Google Scholar 

  4. Becerril, H. A. et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008).

    Article  CAS  Google Scholar 

  5. Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech. 3, 270–274 (2008).

    Article  CAS  Google Scholar 

  6. Mattevi, C. et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19, 2577–2583 (2009).

    Article  CAS  Google Scholar 

  7. Jung, I., Dikin, D. A., Piner, R. D. & Ruoff, R. S. Tunable electrical conductivity of individual graphene oxide sheets reduced at ‘low’ temperatures. Nano Lett. 8, 4283–4287 (2008).

    Article  CAS  Google Scholar 

  8. Gómez-Navarro, C. et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499–3503 (2007).

    Article  Google Scholar 

  9. Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  Google Scholar 

  10. Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nature Nanotech. 3, 491–495 (2008).

    Article  CAS  Google Scholar 

  11. Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

    Article  CAS  Google Scholar 

  12. Bourlinos, A. B. et al. Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19, 6050–6055 (2003).

    Article  CAS  Google Scholar 

  13. Hyeon-Jin, S. et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19, 1987–1992 (2009).

    Article  Google Scholar 

  14. Lerf, A., He, H., Forster, M. & Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998).

    Article  CAS  Google Scholar 

  15. Szabó, T., Berkesi, O. & Dékány, I. DRIFT study of deuterium-exchanged graphite oxide. Carbon 43, 3186–3189 (2005).

    Article  Google Scholar 

  16. Fuente, E., Menendez, J. A., Diez, M. A., Suarez, D. & Montes-Moran, M. A. Infrared spectroscopy of carbon materials: a quantum chemical study of model compounds. J. Phys. Chem. B 107, 6350–6359 (2003).

    Article  CAS  Google Scholar 

  17. Nakajima, T. & Matsuo, Y. Formation process and structure of graphite oxide. Carbon 32, 469–475 (1994).

    Article  CAS  Google Scholar 

  18. Ulrich, H. & Rudolf, H. Über die säurenatur und die methylierung von graphitoxyd. Ber. Dtsch Chem. Ges. 72, 754–771 (1939).

    Article  Google Scholar 

  19. Scholz, W. & Boehm, H. P. Untersuchungen am graphitoxid. VI. Betrachtungen zur struktur des graphitoxids. Z. Anorg. Allg. Chem. 369, 327–340 (1969).

    Article  CAS  Google Scholar 

  20. Hontoria-Lucas, C., López-Peinado, A. J., de López-González, J. D., Rojas-Cervantes, M. L. & Martín-Aranda, R. M. Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33, 1585–1592 (1995).

    Article  CAS  Google Scholar 

  21. Brodie, B. C. On the atomic weight of graphite. Phil. Trans. R. Soc. Lond. 149, 249–259 (1859).

    Article  Google Scholar 

  22. Staudenmaier, L. Verfahren zur darstellung der graphitsaure. Ber. Dtsch Chem. Ges. 31, 1481–1487 (1898).

    Article  Google Scholar 

  23. Hummers, W. S., & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  24. Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 38, 228–240 (2010).

    Article  Google Scholar 

  25. Cassagneau, T., Guerin, F. & Fendler, J. H. Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide nanoplatelets and polymers. Langmuir 16, 7318–7324 (2000).

    Article  CAS  Google Scholar 

  26. Szabó, T., Tombácz, E., Illés, E. & Dékány, I. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon 44, 537–545 (2006).

    Article  Google Scholar 

  27. Cai, W. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008).

    Article  CAS  Google Scholar 

  28. He, H., Klinowski, J., Forster, M. & Lerf, A. A new structural model for graphite oxide. Chem. Phys. Lett. 287, 53–56 (1998).

    Article  CAS  Google Scholar 

  29. Hadzi, D. & Novak, A. Infra-red spectra of graphitic oxide. Trans. Faraday Soc. 51, 1614–1620 (1955).

    Article  CAS  Google Scholar 

  30. Wang, S. et al. High mobility, printable, and solution-processed graphene electronics. Nano Lett. 10, 92–98 (2010).

    Article  CAS  Google Scholar 

  31. López, V. et al. Chemical vapor deposition repair of graphene oxide: a route to highly-conductive graphene monolayers. Adv. Mater. 21, 4683–4686 (2009).

    Article  Google Scholar 

  32. Rubin, Y., Knobler, C. B. & Diederich, F. Precursors to the cyclo[n]carbons: from 3,4-dialkynyl-3-cyclobutene-1,2-diones and 3,4-dialkynyl-3-cyclobutene-1,2-diols to cyclobutenodehydroannulenes and higher oxides of carbon. J. Am. Chem. Soc. 112, 1607–1617 (2002).

    Article  Google Scholar 

  33. Ravagnan, L. et al. Cluster-beam deposition and in situ characterization of carbyne-rich carbon films. Phys. Rev. Lett. 89, 285506 (2002).

    Article  CAS  Google Scholar 

  34. Amanda, S. B. & Ian, K. S. Thermal stability of graphene edge structure and graphene nanoflakes. J. Chem. Phys. 128, 094707 (2008).

    Article  Google Scholar 

  35. Jin, C., Lan, H., Peng, L., Suenaga, K. & Iijima, S. Deriving carbon atomic chains from graphene. Phys. Rev. Lett. 102, 205501 (2009).

    Article  Google Scholar 

  36. van Duin, A. C. T., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001).

    Article  CAS  Google Scholar 

  37. Chenoweth, K., Cheung, S., van Duin, A. C. T., Goddard, W. A. & Kober, E. M. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. J. Am. Chem. Soc. 127, 7192–7202 (2005).

    Article  CAS  Google Scholar 

  38. Chenoweth, K., van Duin, A. C. T. & Goddard, W. A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 112, 1040–1053 (2008).

    Article  CAS  Google Scholar 

  39. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  41. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  42. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  43. Zhang, J. et al. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science 322, 73–77 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Science Foundation (NSF) and Nanoelectronic Research Initiative through the Brown University Materials Research Science and Engineering Center program and from the NSF through grants CMMI-0825771 and CMMI-0855853. We thank N. Medhekar, R. Grantab and I. Milas for discussions and suggestions. Computational support for this research was provided by the grant TG-DMR090098 from the TeraGrid advanced support program and the Center for Computation and Visualization at Brown University. M.C. and C.M. acknowledge financial support from the Jacobs Chair Funds at Rutgers University and an NSF CAREER Award (ECS 0543867). The work at University of Texas Dallas was supported by the SWAN-NRI program and Texas Instruments.

Author information

Authors and Affiliations

Authors

Contributions

V.B.S. and M.C. conceived the project, A.B. and V.B.S. conducted the MD simulations and first-principles calculations with input from C.M. and M.C., M.A and Y.C. performed the FTIR spectroscopy measurements and analysis, M.C., C.M. and V.B.S. wrote the manuscript with input from Y.C. and M.A. All of the authors read and approved the contents of the manuscript prior to submission. A.B. and C.M. contributed equally to this work.

Corresponding author

Correspondence to Vivek B. Shenoy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6704 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagri, A., Mattevi, C., Acik, M. et al. Structural evolution during the reduction of chemically derived graphene oxide. Nature Chem 2, 581–587 (2010). https://doi.org/10.1038/nchem.686

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.686

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing