Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer

Abstract

Porous coordination polymers are materials formed from metal ions that are bridged together by organic linkers and that can combine two seemingly contradictory properties—crystallinity and flexibility. Porous coordination polymers can therefore create highly regular yet dynamic nanoporous domains that are particularly promising for sorption applications. Here, we describe the effective selective sorption of dioxygen and nitric oxide by a structurally and electronically dynamic porous coordination polymer built from zinc centres and tetracyanoquinodimethane (TCNQ) as a linker. In contrast to a variety of other gas molecules (C2H2, Ar, CO2, N2 and CO), O2 and NO are accommodated in its pores. This unprecedented preference arises from the concerted effect of the charge-transfer interaction between TCNQ and these guests, and the switchable gate opening and closing of the pores of the framework. This system provides further insight into the efficient recognition of small gas molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Details of the crystal structure of 1 (open form).
Figure 2: Guest-accommodating structures of 1 (open form).
Figure 3: Adsorption isotherms of several gas molecules.
Figure 4: Structural transformation of 1 accompanying guest sorption.
Figure 5: Infrared spectra of each state of 1.
Figure 6: Raman spectroscopy of 1 under a controlled atmosphere.

Similar content being viewed by others

References

  1. Batten, S. R. & Robson, R. Interpenetrating nets: ordered, periodic entanglement. Angew. Chem. Int. Ed. 37, 1460–1494 (1998).

    Google Scholar 

  2. Blake, A. J. et al. Inorganic crystal engineering using self-assembly of tailored building-blocks. Coord. Chem. Rev. 183, 117–138 (1999).

    CAS  Google Scholar 

  3. Eddaoudi, M. et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001).

    CAS  PubMed  Google Scholar 

  4. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    CAS  Google Scholar 

  5. Fletcher, A. J., Thomas, K. M. & Rosseinsky, M. J. Flexibility in metal–organic framework materials: impact on sorption properties. J. Solid State Chem. 178, 2491–2510 (2005).

    CAS  Google Scholar 

  6. Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    CAS  PubMed  Google Scholar 

  7. Férey, G. & Serre, C. Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem. Soc. Rev. 38, 1380–1399 (2009).

    PubMed  Google Scholar 

  8. Murray, L. J., Dincă, M. & Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009).

    CAS  PubMed  Google Scholar 

  9. Li, J. R., Kuppler, R. J. & Zhou, H. C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Matsuda, R. et al. Highly controlled acetylene accommodation in a metal–organic microporous material. Nature 436, 238–241 (2005).

    CAS  PubMed  Google Scholar 

  11. Mulfort, K. L. & Hupp, J. T. Chemical reduction of metal–organic framework materials as a method to enhance gas uptake and binding. J. Am. Chem. Soc. 129, 9604–9605 (2007).

    CAS  PubMed  Google Scholar 

  12. Zhang, J. P. & Kitagawa, S. Supramolecular isomerism, framework flexibility, unsaturated metal center and porous property of Ag(i)/Cu(i) 3,3′,5,5′-tetrametyl-4,4′-bipyrazolate. J. Am. Chem. Soc. 130, 907–917 (2008).

    CAS  PubMed  Google Scholar 

  13. Tanabe, K. K., Wang, Z. Q. & Cohen, S. M. Systematic functionalization of a metal–organic framework via a postsynthetic modification approach. J. Am. Chem. Soc. 130, 8508–8517 (2008).

    CAS  PubMed  Google Scholar 

  14. Li, Q. W. et al. Docking in metal–organic frameworks. Science 325, 855–859 (2009).

    CAS  PubMed  Google Scholar 

  15. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nature Chem. 1, 695–704 (2009).

    CAS  Google Scholar 

  16. Kitaura, R., Seki, K., Akiyama, G. & Kitagawa, S. Porous coordination-polymer crystals with gated channels specific for supercritical gases. Angew. Chem. Int. Ed. 42, 428–431 (2003).

    CAS  Google Scholar 

  17. Tanaka, D. et al. Kinetic gate-opening process in a flexible porous coordination polymer. Angew. Chem. Int. Ed. 47, 3914–3918 (2008).

    CAS  Google Scholar 

  18. Hamon, L. et al. Co-adsorption and separation of CO2−CH4 mixtures in the highly flexible MIL-53(Cr) MOF. J. Am. Chem. Soc. 131, 17490–17499 (2009).

    CAS  PubMed  Google Scholar 

  19. Kim, H. et al. Temperature-triggered gate opening for gas adsorption in microporous manganese formate. Chem. Commun. 4697–4699 (2008).

  20. Koros, W. J. & Fleming, G. K. Membrane-based gas separation. J. Membr. Sci. 83, 1–80 (1993).

    CAS  Google Scholar 

  21. Stern, S. A. Polymers for gas separations—the next decade. J. Membr. Sci. 94, 1–65 (1994).

    Google Scholar 

  22. Reid, C. R. & Thomas, K. M. Adsorption of gases on a carbon molecular sieve used for air separation: linear adsorptives as probes for kinetic selectivity. Langmuir 15, 3206–3218 (1999).

    CAS  Google Scholar 

  23. Bae, Y. S. & Lee, C. H. Sorption kinetics of eight gases on a carbon molecular sieve at elevated pressure. Carbon 43, 95–107 (2005).

    CAS  Google Scholar 

  24. Yoon, J. W. et al. Gas-sorption selectivity of CUK-1: a porous coordination solid made of cobalt(II) and pyridine-2,4-dicarboxylic acid. Adv. Mater. 19, 1830–1834 (2007).

    CAS  Google Scholar 

  25. Bastin, L. et al. A microporous metal-organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption. J. Phys. Chem. C 112, 1575–1581 (2008).

    CAS  Google Scholar 

  26. Cheon, Y. E., Park, J. & Suh, M. P. Selective gas adsorption in a magnesium-based metal–organic framework. Chem. Commun. 5436–5438 (2009).

  27. Xiao, B. et al. Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework. Nature Chem. 1, 289–294 (2009).

    CAS  Google Scholar 

  28. Vaidhyanathan, R., Iremonger, S. S., Dawson, K. W. & Shimizu, G. K. H. An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures. Chem. Commun. 5230–5232 (2009).

  29. Golden, T. C. & Sircar, S. Gas-adsorption on silicalite. J. Colloid Interface Sci. 162, 182–188 (1994).

    CAS  Google Scholar 

  30. Shimomura, S., Horike, S., Matsuda, R. & Kitagawa, S. Guest-specific function of a flexible undulating channel in a 7,7,8,8-tetracyano-p-quinodimethane dimer-based porous coordination polymer. J. Am. Chem. Soc. 129, 10990–10991 (2007).

    CAS  PubMed  Google Scholar 

  31. Meyer, E. A., Castellano, R. K. & Diederich, F. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. 42, 1210–1250 (2003).

    CAS  Google Scholar 

  32. Zhao, H. et al. Spectroscopic, thermal and magnetic properties of metal/TCNQ network polymers with extensive supramolecular interactions between layers. Chem. Mater. 11, 736–746 (1999).

    CAS  Google Scholar 

  33. Ballester, L., Gutiérrez, A., Perpinán, M. F., Azcondo, M. T. & Sánchez, A. E. Interactions of TCNQ in iron and nickel coordination compounds. Synth. Met. 120, 965–966 (2001).

    CAS  Google Scholar 

  34. Kaim, W. & Moscherosch, M. The coordination chemistry of TCNE, TCNQ and related polynitrile pi-acceptors. Coord. Chem. Rev. 129, 157–193 (1994).

    CAS  Google Scholar 

  35. Khatkale, M. S. & Devlin, J. P. Vibrational and electronic-spectra of the monoanion, dianion and trianion salts of TCNQ. J. Chem. Phys. 70, 1851–1859 (1979).

    CAS  Google Scholar 

  36. Ballester, L., Gutiérrez, A., Perpinán, M. F. & Azcondo, M. T. Supramolecular architectures in low dimensional TCNQ compounds containing nickel and copper polyamine fragments. Coord. Chem. Rev. 192, 447–470 (1999).

    Google Scholar 

  37. Shamir, J., Binenboy, J. & Claassen, H. H. Vibrational frequency of O2+ cation. J. Am. Chem. Soc. 90, 6223–6224 (1968).

    CAS  Google Scholar 

  38. Smardzew, R. R. & Andrews, L. Raman spectra of products of Na and K atom argon matrix reactions with O2 molecules. J. Chem. Phys. 57, 1327–1333 (1972).

    Google Scholar 

  39. Bier, K. D. & Jodl, H. J. Influence of temperature on elementary excitations in solid oxygen by Raman studies. J. Chem. Phys. 81, 1192–1197 (1984).

    CAS  Google Scholar 

  40. Vogel, K. M., Kozlowski, P. M., Zgierski, M. Z. & Spiro, T. G. Determinants of the FeXO (X = C, N, O) vibrational frequencies in heme adducts from experiment and density functional theory. J. Am. Chem. Soc. 121, 9915–9921 (1999).

    CAS  Google Scholar 

  41. Imai, J., Souma, M., Ozeki, S., Suzuki, T. & Kaneko, K. Reaction of dimerized NOx (X = 1 or 2) with SO2 in a restricted slit-shaped micropore space. J. Phys. Chem. 95, 9955–9960 (1991).

    CAS  Google Scholar 

  42. Honda, H. et al. Choking effect of single-wall carbon nanotubes on solvent adsorption in radial breathing mode. J. Phys. Chem. C 111, 3220–3223 (2007).

    CAS  Google Scholar 

  43. Creighton, J. A. & Lippincott, E. R. Vibrational frequency and dissociation energy of superoxide ion. J. Chem. Phys. 40, 1779–1780 (1964).

    CAS  Google Scholar 

  44. Gao, Z. X., Kim, H. S., Sun, Q., Stair, P. C. & Sachtler, W. M. H. UV-Raman characterization of iron peroxo adsorbates on Fe/MFI catalyst with high activity for NOx reduction. J. Phys. Chem. B 105, 6186–6190 (2001).

    CAS  Google Scholar 

  45. Fujita, S. et al. Oxidative destruction of hydrocarbons on a new zeolite-like crystal of Ca12Al10Si4O35 including O2 and O2−2 radicals. Chem. Mater. 15, 255–263 (2003).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Sakaki (Kyoto University) for his help in establishing the theoretical approach. XRPD experiments were performed at the BL02B2 in SPring-8 (proposal no. 2008B1263). This work was supported by an Exploratory Research for Advanced Technology (ERATO) project by Japan Science and Technology Agency (JST) ‘Kitagawa Integrated Pores Project’, and Riken Project in ‘Quantum Order Research Program’. Computation time was provided by the SuperComputer Laboratory, Institute for Chemical Research, Kyoto University.

Author information

Authors and Affiliations

Authors

Contributions

S.S. and S.K. designed and conceived the experiments with support from K.Y. and Y.H. S.S., M.H. and Y.M. measured the Raman spectra. S.S., M.H., R.M., Y.K., J.K. and M.T. performed XRPD measurements and analysis. S.S., R.M. and S.K. contributed to writing the manuscript.

Corresponding author

Correspondence to Susumu Kitagawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1305 kb)

Supplementary information

Crystallographic information for compound 1 with tetrafluorobenzene guests (CIF 22 kb)

Supplementary information

Crystallographic information for compound 1 with anisole guests (CIF 23 kb)

Supplementary information

Crystallographic information for compound 1 with benzonitrile guests (CIF 23 kb)

Supplementary information

Crystallographic information for compound 1 with p-xylene guests guests (CIF 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimomura, S., Higuchi, M., Matsuda, R. et al. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nature Chem 2, 633–637 (2010). https://doi.org/10.1038/nchem.684

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.684

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing