Photoreactivity examined through incorporation in metal−organic frameworks

Abstract

Metal−organic frameworks, typically built by bridging metal centres with organic linkers, have recently shown great promise for a wide variety of applications, including gas separation and drug delivery. Here, we have used them as a scaffold to probe the photophysical and photochemical properties of metal−diimine complexes. We have immobilized a M(diimine)(CO)3X moiety (where M is Re or Mn, and X can be Cl or Br) by using it as the linker of a metal−organic framework, with Mn(II) cations acting as nodes. Time-resolved infrared measurements showed that the initial excited state formed on ultraviolet irradiation of the rhenium-based metal−organic framework was characteristic of an intra-ligand state, rather than the metal−ligand charge transfer state typically observed in solution, and revealed that the metal−diimine complexes rearranged from the fac- to mer-isomer in the crystalline solid state. This approach also enabled characterization of the photoactivity of Mn(diimine)(CO)3Br by single-crystal X-ray diffraction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Views of the single-crystal X-ray structure of 1, with compound 2 adopting an isostructural arrangement.
Figure 2: Fast TRIR spectra obtained following irradiation of a KBr disc of {Mn(DMF)2[C12H6N2O4Re(CO)3Cl]} (1).
Figure 3: Characterization of photochemical conversion from fac- to mer-isomers by IR spectroscopy.
Figure 4: ATR-FTIR spectrum (bottom) of {Mn(DMF)2[C12H6N2O4Mn(CO)3Cl]} (2) and difference FTIR spectra (top).
Figure 5: Views of the single-crystal X-ray structure of the Mn(diimine)(CO)3Cl moiety in 2a and 2b, illustrating fac–mer isomerization.

References

  1. 1

    Lin, X. et al. A porous framework polymer based on a zinc(II) 4,4′-bipyridine-2,6,2′,6′-tetracarboxylate: synthesis, structure and ‘zeolite-like’ behaviors. J. Am. Chem. Soc. 128, 10745–10753 (2006).

  2. 2

    Lin, X. et al. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization and exposed metal sites. J. Am. Chem. Soc. 131, 2159–2171 (2009).

  3. 3

    Shultz, A. M., Farha, O. K., Hupp, J. T. & Nguyen, S. T. A catalytically active, permanently microporous MOF with metalloporphyrin struts. J. Am. Chem. Soc. 131, 4204–4205 (2009).

  4. 4

    Hwang, Y. K. et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew. Chem. Int. Ed. 47, 4144–4148 (2008).

  5. 5

    Lan, A. et al. A luminescent microporous metal−organic framework for the fast and reversible detection of high explosives. Angew. Chem. Int. Ed. 48, 2334–2338 (2009).

  6. 6

    Chen, B. et al. A luminescent metal−organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew. Chem. Int. Ed. 48, 500–503 (2009).

  7. 7

    Chandler, B. D., Yu, J. O., Cramb, D. T. & Shimizu, G. K. H. Series of lanthanide–alkali metal−organic frameworks exhibiting luminescence and permanent microporosity. Chem. Mater. 19, 4467–4473 (2007).

  8. 8

    Ouellette, W., Prosvirin, A. V., Whitenack, K., Dunbar, K. R. & Zubieta, J. A thermally and hydrolytically stable microporous framework exhibiting single-chain magnetism: structure and properties of [Co2(H0.67bdt)3]·20H2O. Angew. Chem. Int. Ed. 48, 2140–2143 (2009).

  9. 9

    Zhang, X.-M., Hao, Z.-M., Zhang, W.-X. & Chen, X.-M. Dehydration-induced conversion from a single-chain magnet into a metamagnet in a homometallic nanoporous metal−organic framework. Angew. Chem. Int. Ed. 46, 3456–3459 (2007).

  10. 10

    Horcajada, P. et al. Flexible porous metal−organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774–6780 (2008).

  11. 11

    Champness, N. R. Coordination frameworks—where next? J. Chem. Soc., Dalton Trans. 877–880 (2006).

  12. 12

    Hoskins, B. F. & Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2 . J. Am. Chem. Soc. 112, 1546–1554 (1990).

  13. 13

    Kawamichi, T., Haneda, T., Kawano, M. & Fujita, M. X-ray observation of a transient hemiaminal trapped in a porous network. Nature 461, 633–635 (2009).

  14. 14

    Kaye, S. S. & Long, J. R. Matrix isolation chemistry in a porous metal−organic framework: photochemical substitutions of N2 and H2 in Zn4O[(η6-1,4-benzenedicarboxylate)Cr(CO)3]3 . J. Am. Chem. Soc. 130, 806–807 (2008).

  15. 15

    Cho, S.-H., Ma, B., Nguyen, S. B., Hupp, J. T. & Albrecht-Schmitt, T. E. A metal−organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem. Commun. 2563–2565 (2006).

  16. 16

    Chen, B. et al. Surface interactions and quantum kinetic melocular sieving for H2 and D2 adsorption on a mixed metal−organic framework material. J. Am. Chem. Soc. 130, 6411–6426 (2008).

  17. 17

    Xie, Z., Ma., L., deKrafft, K. E., Jin, A. & Lin, W. Porous phosphorescent coordination polymers for oxygen sensing. J. Am. Chem. Soc. 132, 922–923 (2010).

  18. 18

    Butler, J. M., George, M. W., Schoonover, J. R., Dattelbaum, D. M. & Meyer, T. J. Application of transient infrared and near infrared spectroscopy to transition metal complex excited states and intermediates. Coord. Chem. Rev. 251, 492–514 (2007).

  19. 19

    Metcalfe, C. & Thomas, J. A. Kinetically inert transition metal complexes that reversibly bind to DNA. Chem. Soc. Rev. 32, 214–224 (2003).

  20. 20

    Coleman, A., Brennan, C., Vos, J. G. & Pryce, M. T. Photophysical properties and applications of Re(I) and Re(I)–Ru(II) carbonyl polypyridyl complexes Coord. Chem. Rev. 2585–2595 (2008).

  21. 21

    Chen, C. et al. Rhenium(I) tricarbonyl complexes with bispyridine ligands attached to sulfur-rich core: syntheses, structures and properties. J. Organomet. Chem. 694, 763–770 (2009).

  22. 22

    Hasselmann, G. M. & Meyer, G. J. Diffusion-limited interfacial electron transfer with large apparent driving forces. J. Phys. Chem. B 103, 7671–7675 (1999).

  23. 23

    Kirgan, R. A., Sullivan, B. P. & Rillema, D. P. Photochemistry and photophysics of coordination compounds: rhenium. Top. Curr. Chem. 281, 45–100 (2007).

  24. 24

    Si, Z., Li, J., Li, B., Zhao, F., Liu, S. & Li, W. Synthesis, structural characterization and electrophosphorescent properties of rhenium(I) complexes containing carrier-transporting groups. Inorg. Chem. 46, 6155–6163 (2007).

  25. 25

    Warren, M. R. et al. Reversible 100% linkage isomerization in a single-crystal to single-crystal transformation: photocrystallographic identification of the metastable [Ni(dppe)(η1-ONO)Cl] isomer. Angew. Chem. Int. Ed. 48, 5711–5714 (2009).

  26. 26

    Easun, T. L. et al. Luminescence and time-resolved infrared study of dyads containing (diimine)Ru(4,4′-diethylamido-2,2′-bipyridine)2 and (diimine)Ru(CN)4 moieties: solvent-induced reversal of the direction of photoinduced energy-transfer. Inorg. Chem. 48, 8759–8770 (2009).

  27. 27

    Lazarides, T. et al. Structural and photophysical properties of adducts of [Ru(bipy)(CN)4]2− with different metal cations: metallochromism and its use in switching photoinduced energy transfer. J. Am. Chem. Soc. 129, 4014–4027 (2007).

  28. 28

    Ward, M. D. [Ru(bipy)(CN)4]2− and its derivatives: photophysical properties and its use in photoactive supramolecular assemblies. Coord. Chem. Rev. 250, 3128–3141 (2006).

  29. 29

    Adams, H. et al. New members of the [Ru(diimine)(CN)4]2 family: structural, electrochemical and photophysical properties. J. Chem. Soc., Dalton Trans. 39–50 (2006).

  30. 30

    Clark, I. P., George, M. W., Johnson, F. P. A. & Turner, J. J. Infrared rigidochromism: a new effect in the IR spectra of the excited states of coordination compounds. Chem. Commun. 1587–1588 (1996).

  31. 31

    Dattelbaum, D. M. & Meyer, T. J. Metal-to-ligand charge transfer excited-state ν(CO) shifts in rigid media. J. Phys. Chem. A 106, 4519–4524 (2002).

  32. 32

    Chen, P. J. & Meyer, T. J. Medium effects on charge transfer in metal complexes. Chem. Rev. 98, 1439–1478 (1998).

  33. 33

    Chen, P. & Meyer, T. J. Electron transfer in frozen media. Inorg. Chem. 35, 5520–5524 (1996).

  34. 34

    Constable, E. C. Expanded ligands—an assembly principle for supramolecular chemistry. Coord. Chem. Rev. 252, 842–855 (2008).

  35. 35

    Ronson, T. K. et al. Luminescent PtII(bipyridyl)(diacetylide) chromophores with pendant binding sites as energy donors for sensitised near-infrared emission from lanthanides: structures and photophysics of PtII/LnIII assemblies. Chem. Eur. J. 12, 9299–9313 (2006).

  36. 36

    Szeto, K. C., Kongshaug, K. O., Jakobsen, S., Tilset, M. & Lillerud, K. P. Design, synthesis and characterization of a Pt–Gd metal–organic framework containing potentially catalytically active sites. J. Chem. Soc., Dalton Trans. 2054–2060 (2008).

  37. 37

    Dincă, M. & Long, J. R. Hydrogen storage in microporous metal−organic frameworks with exposed metal sites. Angew. Chem. Int. Ed. 47, 6766–6779 (2008).

  38. 38

    O'Keeffe, M., Peskov, M., Ramsden, S. J. A. & Yaghi, O. M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 30, 1782–1789 (2008).

  39. 39

    Schanze, S. K., MacQueen, D. B., Perkins, T. A. & Cabana, L. A. Studies of intramolecular electron and energy transfer using the fac-(diimine)ReI(CO)3 chromophore. Coord. Chem. Rev. 122, 63–89 (1993).

  40. 40

    Worl, L. A., Duesing, R., Chen, P., Della Ciana, L. & Meyer, T. J. Photophysical properties of polypyridyl carbonyl complexes of rhenium(I). J. Chem. Soc., Dalton Trans. 849–858 (1991).

  41. 41

    Sacksteder, L., Lee, M., Demas, J. N. & DeGraff, B. A. Long-lived, highly luminescent rhenium(I) complexes as molecular probes: intra- and intermolecular excited-state interactions. J. Am. Chem. Soc. 115, 8230–8238 (1993).

  42. 42

    Towrie, M. et al. A time-resolved infrared vibrational spectroscopic study of the photo-dynamics of crystalline materials. Applied Spectroscopy 63, 57–65 (2009).

  43. 43

    Costa, I., Montalti, M., Pallavicini, P., Perotti, A., Prodi, L. & Zaccheroni, N. Absorption and luminescence as a function of pH for carboxylic acid-functionalized ReI tricarbonyls. J. Organomet. Chem. 593−594, 267–273 (2000).

  44. 44

    Sato, S., Morimoto, T. & Ishitani, O. Photochemical synthesis of mer-[Re(bpy)(CO)3Cl]. Inorg. Chem. 46, 9051–9053 (2007).

  45. 45

    Kleverlaan, C. J., Hartl, F. & Stufkens, D. J. Mechanistic aspects of the thermal mer- to fac- isomerisation of mer-[Mn(X)(CO)3(α-diimine)] (X=Cl, Br, I). J. Organomet. Chem. 561, 57–65 (1998).

  46. 46

    Nelissen, H. F. M., Feiters, M. C. & Nolte, R. J. M. Synthesis and self-inclusion of bipyridine-spaced cyclodextrin dimers. J. Org. Chem. 67, 5901–5906 (2002).

  47. 47

    Abel, E. W. & Wilkinson, G. Carbonyl halides of manganese and some related compounds. J. Chem. Soc. 1501–1505 (1959).

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Engineering and Physical Sciences Research Council (EP/D058147/1) for funding. We are grateful to the Science and Technology Facilities Council (STFC) for access to the Diamond light source for single-crystal structure analysis. M.W.G. gratefully acknowledges receipt of a Royal Society Wolfson Merit Award. We also thank S. Argent for useful discussions and D. Blackmore for experimental assistance.

Author information

A.J.B., D.R.A. and H.N. carried out the X-ray structural data analysis, X.Z.S. the photophysical measurements, T.L.E. the photophysical measurements, syntheses and characterization and J.J. the syntheses, characterization and X-ray structural data analysis. N.R.C. and M.W.G. designed, directed and supervised the overall project. All authors co-wrote the paper.

Correspondence to Neil R. Champness or Michael W. George.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 607 kb)

Supplementary information

Crystallographic information for the metal−organic framework (ReMn), 1 (CIF 12 kb)

Supplementary information

Crystallographic information for the metal−organic framework MnMn), fac-isomer, 2a (CIF 17 kb)

Supplementary information

Crystallographic information for the metal−organic framework MnMn), mer-isomer, 2b (CIF 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blake, A., Champness, N., Easun, T. et al. Photoreactivity examined through incorporation in metal−organic frameworks. Nature Chem 2, 688–694 (2010). https://doi.org/10.1038/nchem.681

Download citation

Further reading