Abstract
Photoinduced phase-transition materials, such as chalcogenides, spin-crossover complexes, photochromic organic compounds and charge-transfer materials, are of interest because of their application to optical data storage. Here we report a photoreversible metal–semiconductor phase transition at room temperature with a unique phase of Ti3O5, λ-Ti3O5. λ-Ti3O5 nanocrystals are made by the combination of reverse-micelle and sol–gel techniques. Thermodynamic analysis suggests that the photoinduced phase transition originates from a particular state of λ-Ti3O5 trapped at a thermodynamic local energy minimum. Light irradiation causes reversible switching between this trapped state (λ-Ti3O5) and the other energy-minimum state (β-Ti3O5), both of which are persistent phases. This is the first demonstration of a photorewritable phenomenon at room temperature in a metal oxide. λ-Ti3O5 satisfies the operation conditions required for a practical optical storage system (operational temperature, writing data by short wavelength light and the appropriate threshold laser power).
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. & Takao, M. Rapid-phase transitions of GeTe–Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849–2856 (1991).
Kolobov, A. V. et al. Understanding the phase-change mechanism of rewritable optical media. Nature Mater. 3, 703–708 (2004).
Gütlich, P., Hauser, A. & Spiering, H. Thermal and optical switching of iron(ii) complexes Angew. Chem. Int. Ed. Engl. 33, 2024–2054 (1994).
Nasu, K. Relaxations of Excited States and Photo-Induced Structural Phase Transitions (Springer, 1997).
Kahn, O. & Martinez, C. J. Spin-transition polymers: from molecular materials toward memory devices. Science 279, 44–48 (1998).
Decurtins, S., Gütlich, P., Köhler, C.P., Spiering, H. & Hauser, A. Light-induced excited spin state trapping in a transition-metal complex: the hexa-1-propyltetrazole-iron(ii) tetrafluoroborate spin-crossover system Chem. Phys. Lett. 105, 1–4 (1984).
Létard, J. F. et al. Light induced excited pair spin state in an iron(ii) binuclear spin-crossover compound. J. Am. Chem. Soc. 121, 10630–10631 (1999).
Varret, F. et al. Thermally induced dilution of the photo-induced magnetic state of Prussian Blue analogues. Mol. Cryst. Liq. Cryst. 379, 333–340 (2002).
Dürr, H. & Bouas-Laurent, H. Photochromism: Molecules and Systems (Elsevier, 1990).
Aktsipetrov, O. A., Fedyanin, A. A., Melnikov, A. V., Mishina, E. D. & Murzina, T. V. Second harmonic generation as a nondestructive readout of optical (photo(electro)chromic and magnetic) memories. Jpn J. Appl. Phys. 37, 122–127 (1998).
Irie, M., Fukaminato, T., Sasaki, T., Tamai, N. & Kawai, T. Organic chemistry: a digital fluorescent molecular photoswitch. Nature 420, 759–760 (2002).
Habuchi, S. et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl Acad. Sci. USA 102, 9511–9516 (2005).
Koshihara, S., Tokura, Y., Mitani, T., Saito, G. & Koda, T. Photoinduced valence instability in the organic molecular compound tetrathisfulvalence-p-chloranil (TTF-CA). Phys. Rev. B 42, 6853–6856 (1990).
Collet, E. et al. Laser-induced ferroelectric structural order in an organic charge-transfer crystal. Science 300, 612–615 (2003).
Ohkoshi, S. & Hashimoto, K. Photo-magnetic and magneto-optical effects of functionalized metal polycyanides. J. Photochem. Photobiol. C 2, 71–88 (2001).
Verdaguer, M. Molecular electronics emerges from molecular magnetism. Science 272, 698–699 (1996).
Ohkoshi, S. et al. Photoinduced magnetic pole inversion in a ferro–ferrimagnet: (Feii0.40Mnii0.60)1.5Criii(CN)6 . Appl. Phys. Lett. 70, 1040–1042 (1997).
Herrera, J. M. et al. Reversible photoinduced magnetic properties in the heptanuclear complex [Moiv(CN)2(CN–CuL)6]8+: a photomagnetic high-spin molecule. Angew. Chem. Int. Ed. 43, 5468–5471 (2004).
Dei, A. Photomagnetic effects in polycyanometallate compounds: an intriguing future chemically based technology? Angew. Chem. Int. Ed. 44, 1160–1163 (2005).
Ohkoshi, S., Ikeda, S., Hozumi, T., Kashiwagi, T. & Hashimoto, K. Photoinduced magnetization with a high Curie temperature and a large coercive field in a cyano-bridged cobalt–tungstate bimetallic assembly. J. Am. Chem. Soc. 128, 5320–5321 (2006).
Tokoro, H. et al. Visible-light-induced reversible photomagnetism in rubidium manganese hexacyanoferrate. Chem. Mater. 20, 423–428 (2008).
Miyano, K., Tanaka, T., Tomioka, Y. & Tokura, Y. Photoinduced insulator-to-metal transition in a perovskite manganite. Phys. Rev. Lett. 78, 4257–4260 (1997).
Fiebig, M., Miyano, K., Tomioka, Y. & Tokura, Y. Visualization of the local insulator–metal transition in Pr0.7Ca0.3MnO3 . Science 280, 1925–1928 (1998).
Åsbrink, S. & Magnéli, A. Crystal structure studies on trititanium pentoxide, Ti3O5 . Acta Cryst. 12, 575–581 (1959).
Hong, S. H. & Åsbrink, S. The structure of γ-Ti3O5 at 297 K. Acta Cryst. B 38, 2570–2576 (1982).
Onoda, M. Phase transitions of Ti3O5 . J. Solid State Chem. 136, 67–73 (1998).
Chase, M. W. NIST–JANAF Thermochemical Tables 4th edn (ed. Chase, M.) Journal of Physical and Chemical Reference Data, Monograph No. 9 (American Chemical Society and American Institute of Physics, 1998).
Keys, L. K. & Mulay, L. N. Magnetic susceptibility measurements of rutile and the Magnéli phases of the Ti–O system. Phys. Rev. 154, 453–456 (1967).
Bartholomew, R. F. & Frankl, D. R. Electrical properties of some titanium oxide. Phys. Rev. 187, 828–833 (1969).
Mulay, L. N. & Danley, W. J. Cooperative magnetic transition in the titanium–oxygen system: a new approach. J. Appl. Phys. 41, 877–879 (1970).
Rao, C. N. R., Ramdas, S., Loehman, R. E. & Honing, J. M. Semiconductor–metal transition in Ti3O5 . J. Solid State Chem. 3, 83–88 (1971).
Zachariasen, W. H. Bond lengths in oxygen and halogen compounds of d and f elements. J. Less-Common Metals 62, 1–7 (1978).
Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Meinders, E. R., Mijiritskii, A. V., van Pieterson, L. & Wuttig, M. Optical Data Storage: Phase-Change Media and Recording (Springer, 2006).
Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).
Slichter, C. P. & Drickamer, H. G. Pressure-induced electronic changes in compounds of iron. J. Chem. Phys. 56, 2142–2160 (1972).
Izumi, F. & Momma, K. Three-dimensional visualization in powder diffraction. Solid. State Phenom. 130, 15–20 (2007).
McHale, J. M., Auroux, A., Perrotta, A. J. & Navrotsky, A. Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277, 788–791 (1997).
Ohkoshi, S., Sakurai, S., Jin, J. & Hashimoto, K. The addition effects of alkaline earth ions in the chemical synthesis of ϵ-Fe2O3 nanocrystals that exhibit a huge coercive field. J. Appl. Phys. 97, 10K312 (2005).
Makiura, R. et al. Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgI nanoparticles. Nature Mater. 8, 476–480 (2009).
Acknowledgements
This work was performed under the management of the Project to Create Photocatalyst Industry for Recycling-oriented Society supported by the New Energy and Industrial Technology Development Organization. We are grateful to T. Nuida and K. Takeda for drawing the colour figures, K. Tomono for measuring the infrared spectra, Y. Kakegawa, H. Tsunakawa and M. Adachi for collecting TEM images, S. Ohtsuka and T. Moroyama for collecting SEM images, and T. Takasaki, Y. Namatame, M. Saigo and M. Yasaka (Rigaku Corporation) for measuring the XRD patterns. We are thankful for a Grant-in-Aid for the Global COE Program, ‘Chemistry Innovation through Cooperation of Science and Engineering’ from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and the Center for Nano Lithography & Analysis, The University of Tokyo, supported by MEXT, Japan.
Author information
Authors and Affiliations
Contributions
S.O. designed and coordinated this study and contributed to all measurements and calculations, and wrote the paper. Y.T. carried out synthesis, DSC and first-principle band calculation. T.M. carried out synthesis. A.N. performed XRD measurements, Rietveld analysis and ICP-MS. F.H. carried out synthesis and TEM, SEM and SQUID measurements. K.H. contributed to the discussion. H.T. carried out synthesis and thermodynamic analysis, and carried out the photoirradiation and pressure-effect experiments. All authors commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 5281 kb)
Supplementary information
Supplementary Movie S1 (MOV 2101 kb)
Rights and permissions
About this article
Cite this article
Ohkoshi, Si., Tsunobuchi, Y., Matsuda, T. et al. Synthesis of a metal oxide with a room-temperature photoreversible phase transition. Nature Chem 2, 539–545 (2010). https://doi.org/10.1038/nchem.670
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.670
This article is cited by
-
Infrared Light-Induced Charge Transfer of Prussian Blue Analogs K0.4Co1.3[Fe(CN)6]·nH2O
Journal of Superconductivity and Novel Magnetism (2024)
-
Flatband λ-Ti3O5 towards extraordinary solar steam generation
Nature (2023)
-
Giant adiabatic temperature change and its direct measurement of a barocaloric effect in a charge-transfer solid
Nature Communications (2023)
-
Harnessing the flatband λ-Ti3O5: A breakthrough in solar steam generation
Science China Materials (2023)
-
Free-standing and binder-free porous monolithic electrodes prepared via sol–gel processes
Journal of Sol-Gel Science and Technology (2022)