Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Robust dynamics


Although metal–organic frameworks are extensive in number and have found widespread applications, there remains a need to add complexity to their structures in a controlled manner. It is inevitable that frameworks capable of dynamics will be required. However, as in other extended structures, when they are flexible, they fail. We propose that mechanically interlocked molecules be inserted covalently into the rigid framework backbone such that they are mounted as integrated components, capable of dynamics, without compromising the fidelity of the entire system. We have coined the term 'robust dynamics' to describe constructs where the repeated dynamics of one entity does not affect the integrity of any others linked to it. The implication of this concept for dynamic molecules, whose performance has the disadvantages of random motion, is to bring them to a standstill in three-dimensional extended structures and thus significantly enhance their order, and ultimately their coherence and performance.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A rare view into the construction of metal–organic frameworks (MOFs).
Figure 2: Illustrative examples of how elaborate units can be mounted onto the organic struts to introduce complexity and dynamics into MOFs.
Figure 3: The 2D and 3D merger of MIMs and MOFs to bring about robust dynamics.
Figure 4: The sorting, coverage and active domains of MOFs.


  1. Long, J. R. & Yaghi O. M. The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 38, 1213–1214 (2009).

    CAS  Article  Google Scholar 

  2. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    CAS  Article  Google Scholar 

  3. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nature Chem. 1, 695–704 (2009).

    CAS  Article  Google Scholar 

  4. Serre, C. et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828–1831 (2007).

    CAS  Google Scholar 

  5. Maji, T. K., Matsuda, R. & Kitagawa, S. A flexible interpenetrating coordination framework with a bimodal porous functionality. Nature Mater. 6, 142–148 (2007).

  6. Balzani, V., Credi, A. & Venturi, M. Molecular Devices and Machines – Concepts and Perspectives for the Nanoworld (Wiley-VCH, 2008).

    Book  Google Scholar 

  7. Stoddart, J. F. The chemistry of the mechanical bond. Chem. Soc. Rev. 38, 1802–1820 (2009).

    CAS  Article  Google Scholar 

  8. Diederich, F. & Stang, P. J. (eds) Templated Organic Synthesis (Wiley-VCH, 1999).

    Book  Google Scholar 

  9. Choi, J. W. et al. Ground-state equilibrium thermodynamics and switching kinetics of bistable [2]rotaxane switches in solution, polymer gels, and molecular electronic devices. Chem. Eur. J. 12, 261–279 (2006).

    CAS  Article  Google Scholar 

  10. Li, H., Eddaoudi, M., O'Keeffe, O. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999).

    CAS  Article  Google Scholar 

  11. Ockwig, N., Friedrichs, O. D., O'Keeffe, M. & Yaghi, O. M. Reticular chemistry: occurrence and taxonomy of nets, and grammar for the design of frameworks. Acc. Chem. Res. 38, 176–182 (2005).

    CAS  Article  Google Scholar 

  12. Eddaoudi, M. et al. Systematic design of pore size and functionality in metal-organic frameworks and application in methane storage. Science 295, 469–472 (2002).

    CAS  Article  Google Scholar 

  13. Schill, G. Catenanes, Rotaxanes and Knots (Academic Press, 1971).

    Google Scholar 

  14. Sauvage, J-P. & Dietrich-Buchecker, C. (eds) Molecular Catenanes, Rotaxanes and Knots: A Journey Through the World of Molecular Topology (Wiley-VCH, 1999).

    Book  Google Scholar 

  15. Bissell, R. A., Cordova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (2004).

    Article  Google Scholar 

  16. Livoreil, A., Dietrich-Buchecker, C. O. & Sauvage, J-P. Electrochemically triggered swinging of a [2]catenane. J. Am. Chem. Soc. 116, 9399–9400 (1994).

    CAS  Article  Google Scholar 

  17. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    CAS  Article  Google Scholar 

  18. Chichak, K. S. et al. Molecular Borromean rings. Science 304, 1308–1312 (2004).

    CAS  Article  Google Scholar 

  19. Klajn, R. et al. Metal nanoparticles functionalized with molecular and supramolecular switches. J. Am. Chem. Soc. 131, 4233–4235 (2009).

    CAS  Article  Google Scholar 

  20. Collier, C. P. et al. A [2]catenane-based solid-state electronically reconfigurable switch. Science 289, 1172–1175 (2000).

    CAS  Article  Google Scholar 

  21. Juluri, B. K. et al. A mechanical actuator driven electrochemically by artificial molecular muscles. ACS Nano 3, 291–300 (2009).

    CAS  Article  Google Scholar 

  22. Luo, Y. et al. Two-dimensional molecular electronic circuits. ChemPhysChem 3, 519–525 (2002).

    CAS  Article  Google Scholar 

  23. Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007).

    CAS  Article  Google Scholar 

  24. Li, Q. et al. Docking in metal-organic frameworks. Science 325, 855–859 (2009).

    CAS  Article  Google Scholar 

  25. Kim, K. Entering the recognition domain. Nature Chem. 1, 603–604 (2009).

    CAS  Article  Google Scholar 

  26. Alavi, S. Selective guest docking in metal-organic framework materials. ChemPhysChem 11, 55–57 (2010).

    CAS  Article  Google Scholar 

  27. Zhao, Y-L. et al. Rigid strut-containing crown ethers and [2]catenanes for incorporation into metal-organic frameworks. Chem. Eur. J. 15, 13356–13380 (2009).

    CAS  Article  Google Scholar 

  28. Anelli, P-L. et al. Molecular meccano 1. [2]Rotaxane and a [2]catenane made to order. J. Am. Chem. Soc. 114, 193–218 (1992).

    CAS  Article  Google Scholar 

  29. Balzani, V. et al. Constructing molecular machinery. A chemically switchable [2]catenane. J. Am. Chem. Soc. 122, 3542–3543 (2000).

    CAS  Article  Google Scholar 

  30. Li, Q. et al. A metal-organic framework replete with ordered donor-acceptor catenanes. Chem. Commun. 46, 380–382 (2010).

    Article  Google Scholar 

  31. Kandra, K., Koike, T., Endo, K. & Shibata, T. The first asymmetric Sonogashira coupling for enantioselective generation of planar chirality in paracyclophanes. Chem. Commun. 1870–1872 (2009).

  32. Glink, P. T. & Stoddart, J. F. Concept transfer from the life sciences into materials science. Pure Appl. Chem. 70, 419–424 (1998).

    CAS  Article  Google Scholar 

  33. Stoddart, J. F. Thither supramolecular chemistry. Nature Chem. 1, 14–15 (2009).

    CAS  Article  Google Scholar 

Download references


We acknowledge the Department of Energy (BES-Separation Program), the Department of Defense (Defense Reduction Threat Agency), the Air Force Office of Scientific Research under their Multidisciplinary University Research Initiative (FA9550-07-1-0534), the Microelectronics Advanced Research Corporation and its Focus Center Research Program, the Center on Functional Engineered Nano-Architectonics, and the NSF-MRSEC Program through the Northwestern University Materials Research Science and Engineering Center for their continued support of this research.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to J. Fraser Stoddart or Omar M. Yaghi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deng, H., Olson, M., Stoddart, J. et al. Robust dynamics. Nature Chem 2, 439–443 (2010).

Download citation

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing