Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective iron-catalysed O–H bond insertions

Abstract

The ready availability, low price and environmentally benign character of iron mean that it is an ideal alternative to precious metals in catalysis. Recent growth in the number of iron-catalysed reactions reported reflects an increasing demand for sustainable chemistry. Only a limited number of chiral iron catalysts have been reported and these have, in general, proven less enantioselective than other transition-metal catalysts, thus limiting their appeal. Here, we report that iron complexes of spiro-bisoxazoline ligands are highly efficient catalysts for asymmetric O–H bond insertion reactions. These complexes catalyse insertions into the O–H bond of a wide variety of alcohols and even water, with exceptional enantioselectivities under mild reaction conditions. The selectivities surpass those obtained with other transition-metal catalysts. This study should inspire and encourage the use of iron instead of traditional precious metals in the development of greener catalysts for catalytic asymmetric synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transition-metal-catalysed insertion reactions starting with diazo compounds.
Figure 2: Synthetic applications of the O–H insertion products.

Similar content being viewed by others

References

  1. Jacobson, E. N., Pfaltz, A. & Yamamoto, H. (eds) Comprehensive Asymmetric Catalysis and supplement 1 and 2 (Springer, 1999, 2004).

  2. Yoon, T. P. & Jacobsen, E. N. Privileged chiral catalysts. Science 299, 1691–1693 (2003).

    Article  CAS  Google Scholar 

  3. Bolm, C. A new iron age. Nature Chem. 1, 420 (2009).

    Article  CAS  Google Scholar 

  4. Plietker, B. (ed.) Iron Catalysis in Organic Chemistry (Wiley-VCH, 2008).

  5. Bolm, C., Legros, J., Le Paih, J. & Zani, L. Iron-catalyzed reaction in organic synthesis. Chem. Rev. 104, 6217–6254 (2004).

    Article  CAS  Google Scholar 

  6. Enthaler, S., Junge, K. & Beller, M. Sustainable metal catalysis with iron: from rust to a rising star? Angew. Chem. Int. Ed. 47, 3317–3321 (2008).

    Article  CAS  Google Scholar 

  7. Sherry, B. D. & Fürstner, A. The promise and challenge of iron-catalyzed cross coupling. Acc. Chem. Res. 41, 1500–1511 (2008).

    Article  CAS  Google Scholar 

  8. Corey, E. J., Imai, N. & Zhang, H.-Y. Designed catalyst for enantioselective Diels–Alder addition from a C2-symmetric chiral bis(oxazoline)–Fe(III) complex. J. Am. Chem. Soc. 113, 728–729 (1991).

    Article  CAS  Google Scholar 

  9. Suzuki, K., Oldenburg, P. D. & Que, L. Jr. Iron-catalyzed asymmetric olefin cis-dihydoxylation with 97% enantiomeric excess. Angew. Chem. Int. Ed. 47, 1887–1889 (2008).

    Article  CAS  Google Scholar 

  10. Shaikh, N. S., Enthaler, S., Junge, K. & Beller, M. Iron-catalyzed enantioselective hydrosilylation of ketones. Angew. Chem. Int. Ed. 47, 2497–2501 (2008).

    Article  CAS  Google Scholar 

  11. Langlotz, B. K., Wadepohl, H. & Gade, L. H. Chiral bis(pyridylimino)isoindoles: a highly modular class of pincer ligands for enantioselective catalysis. Angew. Chem. Int. Ed. 47, 4670–4674 (2008).

    Article  CAS  Google Scholar 

  12. Mikhailine, A., Lough, A. J. & Morris, R. H. Efficient asymmetric transfer hydrogenation of ketones catalyzed by an iron complex containing a P–N–N–P tetradentate ligand formed by template synthesis. J. Am. Chem. Soc. 131, 1394–1395 (2009).

    Article  CAS  Google Scholar 

  13. Egami, H. & Katsuki, T. Iron-catalyzed asymmetric aerobic oxidation: oxidative coupling of 2-naphthols. J. Am. Chem. Soc. 131, 6082–6083 (2009).

    Article  CAS  Google Scholar 

  14. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals 4th edn, vol. 11 (Wiley-Interscience, 2005).

  15. Doyle, M. P., McKervey, M. A. & Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds (Wiley, 1998).

  16. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    Article  CAS  Google Scholar 

  17. Ge, M. & Corey, E. J. A method for the catalytic enantioselective synthesis of 6-silylated 2-cyclohexenones. Tetrahedron Lett. 47, 2319–2321 (2006).

    Article  CAS  Google Scholar 

  18. Maier, T. C. & Fu, G. C. Catalytic enantioselective O–H insertion reaction. J. Am. Chem. Soc. 128, 4594–4595 (2006).

    Article  CAS  Google Scholar 

  19. Liu, B., Zhu, S.-F., Zhang, W., Chen, C. & Zhou, Q.-L. Highly enantioselective insertion of carbenoids into N–H bonds catalyzed by copper complexes of chiral bisoxazolines. J. Am. Chem. Soc. 129, 5834–5835 (2007).

    Article  CAS  Google Scholar 

  20. Lee, E. C. & Fu, G. C. Copper-catalyzed asymmeric N–H insertion reactions: coupling of diazo compounds with carbamates to generate α-amino acids. J. Am. Chem. Soc. 129, 12066–12067 (2007).

    Article  CAS  Google Scholar 

  21. Chen, C., Zhu, S.-F., Liu, B., Wang, L.-X. & Zhou, Q.-L. Highly enantioselective insertion of carbenoids into O–H bonds of phenols: an efficient approach to chiral α-aryloxycarboxylic esters. J. Am. Chem. Soc. 129, 12616–12617 (2007).

    Article  CAS  Google Scholar 

  22. Zhu, S.-F., Chen, C., Cai, Y. & Zhou, Q.-L. Catalytic asymmetric reaction with water: enantioselective synthesis of α-hydroxyesters by a copper-carbenoid O–H insertion reaction. Angew. Chem. Int. Ed. 47, 932–934 (2008).

    Article  CAS  Google Scholar 

  23. Jolly, P. W. & Pettit, R. Evidence for a novel metal–carbene system. J. Am. Chem. Soc. 88, 5044–5045 (1966).

    Article  CAS  Google Scholar 

  24. Redlich, M. & Hossain, M. M. Synthesis of asymmetric iron–pybox complexes and their application to aziridine forming reaction. Tetrahedron Lett. 45, 8987–8990 (2004).

    Article  CAS  Google Scholar 

  25. Liu, B., Zhu, S.-F., Wang, L.-X. & Zhou, Q.-L. Preparation and application of bisoxazoline ligands with a chiral spirobiindane skeleton for asymmetric cyclopropanation and allylic oxidation. Tetrahedron Asymm. 17, 634–641 (2006).

    Article  CAS  Google Scholar 

  26. Schmidt, B. & Wildemann, H. Diastereoselective ring-closing metathesis in the synthesis of dihydropyrans. J. Org. Chem. 65, 5817–5822 (2000).

    Article  CAS  Google Scholar 

  27. Schmidt, B. Ruthenium-catalyzed olefin metathesis double-bond isomerization sequence. J. Org. Chem. 69, 7672–7687 (2004).

    Article  CAS  Google Scholar 

  28. De Benassuti, L., Garanti, L. & Molteni, G. Stereoselective intramolecular cycloaddition of homochiral nitrilimines: synthesis of enantiopure (6S)-substituted-2,3,3a,4,5,6-hexahydrofuro[3,4-c]pyrazoles. Tetrahedron Asymm. 15, 1127–1131 (2004).

    Article  CAS  Google Scholar 

  29. Cierpucha, M., Solecka, J., Frelek, J., Szczukiewicz, P. & Chmielewski, M. Synthesis, biological and chiroptical active of 3-phenyl-clavams. Bioorg. Med. Chem. 12, 405–416 (2004).

    Article  CAS  Google Scholar 

  30. Schmidt, B. & Nave, S. Palladium-catalyzed O-allylation of α-hydroxy carbonyl compounds. Adv. Synth. Catal. 348, 531–537 (2006) and references therein.

    Article  CAS  Google Scholar 

  31. Grimley, J. Pharma challenged: market shifts and generic competition create dynamic environment for drug developers. Chem. Eng. News 84, 17 (2006).

    Article  Google Scholar 

  32. Castaldi, G., Barreca, G. & Bologna, A. A process for the preparation of clopidogrel. WO 03093276 (2003).

Download references

Acknowledgements

The authors wish to thank the National Natural Science Foundation of China, the National Basic Research Program of China (973 Program, nos 2006CB806106, 2010CB833300), the Ministry of Health (grant no. 2009ZX09501-017) and the ‘111’ Project of the Ministry of Education of China (grant no. B06005) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

S.-F.Z., J.-H.X. and Q.-L.Z. designed the project. C.Y. and H.-X.M. carried out the experimental work. S.-F.Z. and Q.-L.Z. wrote the paper. All authors analysed the data, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Qi-Lin Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3861 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, SF., Cai, Y., Mao, HX. et al. Enantioselective iron-catalysed O–H bond insertions. Nature Chem 2, 546–551 (2010). https://doi.org/10.1038/nchem.651

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.651

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing