Induction of chiral porous solids containing only achiral building blocks

Abstract

In many areas of chemistry the synthesis of chiral compounds is a target of increasing importance. They play a vital role in biological function and in many areas of society and science, including biology, medicine, biotechnology, chemistry and agriculture. Many pharmaceutical molecules, like their biological targets, are chiral and it is therefore easy to understand the growing demand for efficient methods of producing enantiomerically pure compounds. This is equally true for the preparation of chiral solids, which have potential applications in asymmetric catalysis, chiral separations and the like. In this Review we will consider recent progress and future potential in the development of methods for the preparation of chirally pure solids, in particular where the building blocks of the structure are achiral themselves. We will discuss strategies for the synthesis of both inorganic (for example, zeolites) and inorganic–organic hybrid (for example, metal organic framework) chiral porous solids.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Strategies for preparing homochiral solids.
Figure 2: A selection of chiral zeolites.
Figure 3: The chiral induction effect of camphoric acid on the crystallization of the Mn–formate–adc system.
Figure 4: Chiral induction of the zeolite CZP by a nucleotide into the enantioenriched form.

References

  1. 1

    Cheetham, A. K., Ferey, G. & Loiseau, T. Open-framework inorganic materials. Angew. Chem. Int. Ed. 38, 3268–3292 (1999).

    CAS  Article  Google Scholar 

  2. 2

    Long, J. R. & Yaghi, O. M. The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 38, 1213–1214 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Ferey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    CAS  Article  Google Scholar 

  4. 4

    Serre, C. et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828–1831 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nature Chem. 1, 695–704 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Cote, A. P., Benin, A. I., Ockwig, N. W., O'Keeffe, M., Matzger, A. J. & Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    CAS  Article  Google Scholar 

  7. 7

    El-Kaderi, H. M. et al. Designed synthesis of 3D covalent organic frameworks. Science 316, 268–272 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Morris, R. E. & Wheatley, P. S. Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 47, 4966–4981 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Corma, A., Diaz-Cabanas, M., Martinez-Triguero, J., Rey, F. & Rius, J. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature 418, 514–517 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Murray, L. J., Dinca, M. & Long, J. R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Duren, T., Sarkisov, L., Yaghi, O. M. & Snurr, R. Q. Design of new materials for methane storage. Langmuir 20, 2683–2689 (2004).

    Article  Google Scholar 

  13. 13

    Millward, A. R. & Yaghi, O. M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Horcajada, P. et al. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Xiao, B. et al. Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework. Nature Chem. 1, 289–294 (2009).

    CAS  Article  Google Scholar 

  17. 17

    McKinlay, A. C. et al. Exceptional behavior over the whole adsorptionstorage-delivery cycle for NO in porous metal organic frameworks. J. Am. Chem. Soc. 130, 10440–10444 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Flack, H. D. Chiral and achiral crystal structures. Helv. Chim. Acta 86, 905–921 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Flack, H. D. & Bernardinelli, G. The use of X-ray crystallography to determine absolute configuration. Chirality 20, 681–690 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. Design, chirality, and flexibility in nanoporous molecule-based materials. Acc. Chem. Res. 38, 273–282 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Seo, J. S. et al. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404, 982–986 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Kesanli, B. & Lin, W. Chiral porous coordination networks: rational design and applications in enantioselective processes. Coord. Chem. Rev. 246, 305–326 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Ma, L., Abney, C. & Lin, W. Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc. Rev. 38, 1248–1256 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Vaidhyanathan, R. et al. A family of nanoporous materials based on an amino acid backbone. Angew. Chem. Int. Ed. 45, 6495–6499 (2006 ).

    CAS  Article  Google Scholar 

  25. 25

    Anokhina, E. V., Go, Y. B., Lee, Y., Vogt, T. & Jacobson, A. J. Chiral three-dimensional microporous nickel aspartate with extended Ni−O−Ni bonding. J. Am. Chem. Soc. 128, 9957–9962 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Kepert, C. J., Prior, T. J. & Rosseinsky, M. J. A versatile family of interconvertible microporous chiral molecular frameworks: The first example of ligand control of network chirality. J. Am. Chem. Soc. 122, 5158–5168 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Bradshaw, D., Prior, T. J., Cussen, E. J., Claridge, J. B. & Rosseinsky, M. J. Permanent microporosity and enantioselective sorption in a chiral open framework. J. Am. Chem. Soc. 126, 6106–6114 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Newsam, J. M., Treacy, M. M. J., Koetsier, W. T. & Degruyter, C. B. Structural characterization of zeolite-beta. Proc. Royal Soc. Lond. A 420 375–405 (1988).

    CAS  Article  Google Scholar 

  29. 29

    Harrison, W. T. A., Gier, T. E., Stucky, G. D., Broach, R. W. & Bedard, R. A. NaZnPO4 center dot H2O, an open-framework sodium zincophosphate with a new chiral tetrahedral framework topology. Chem. Mater. 8, 145–151 (1996).

    CAS  Article  Google Scholar 

  30. 30

    Cheetham, A. K. et al. Very open microporous materials: from concept to reality. Stud. Surf. Sci. Catal. 135, 158–162 (2001).

    Article  Google Scholar 

  31. 31

    Song, X. W. et al. Heteroatom-stabilized chiral framework of aluminophosphate molecular sieves. Angew. Chem. Int. Ed. 48, 314–317 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Tang, L. Q. et al. A zeolite family with chiral and achiral structures built from the same building layer. Nature Mater. 7, 381–385 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Sun, J. L. et al. The ITQ-37 mesoporous chiral zeolite. Nature 458, 1154–1190 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Yu, J. H. & Xu, R. R. Chiral zeolitic materials: structural insights and synthetic challenges. J. Mater. Chem. 18, 4021–4030 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Li, Y. et al. Design of chiral zeolite frameworks with specified channels through constrained assembly of atoms. Chem. Mater. 17, 4399–4405 (2005).

    CAS  Article  Google Scholar 

  36. 36

    Pérez-García, L. & Amabilino, D. B. Spontaneous resolution under supramolecular control. Chem. Soc. Rev. 31, 342–356 (2002).

    Article  Google Scholar 

  37. 37

    Kendrick, J., Gourlay, M. D., Neumann, M. A. & Leusen, F. J. J. Predicting spontaneous racemate resolution using recent developments in crystal structure prediction. Crystengcomm 11, 2391–2399 (2009).

    CAS  Article  Google Scholar 

  38. 38

    Flack, H. D. Louis Pasteur's discovery of molecular chirality and spontaneous resolution in 1848, together with a complete review of his crystallographic and chemical work. Acta Crystallogr. A 65, 371–389 (2009).

    CAS  Article  Google Scholar 

  39. 39

    Kondepudi, D. K., Kaufman, R. J. & Singh, N. Chiral symmetry-breaking in sodium-chlorate crystallization. Science 250, 975–976 (1990).

    CAS  Article  Google Scholar 

  40. 40

    Siemeling, U., Scheppelmann, I., Neumann, B., Stammler, A., Stammler, H. G. & Frelek, J. Spontaneous chiral resolution of a coordination polymer with distorted helical structure consisting of achiral building blocks. Chem. Commun., 2236–2237 (2003).

  41. 41

    Ezuhara, T., Endo, K. & Aoyama, Y. Helical coordination polymers from achiral components in crystals. Homochiral crystallization, homochiral helix winding in the solid state, and chirality control by seeding. J. Am. Chem. Soc. 121, 3279–3283 (1999).

    CAS  Article  Google Scholar 

  42. 42

    Dryzun, C., Mastai, Y., Shvalb, A. & Avnir, D. Chiral silicate zeolites. J. Mater. Chem. 19, 2062–2069 (2009).

    CAS  Article  Google Scholar 

  43. 43

    Cundy, C. S. & Cox, P. A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Micropor. Mesopor. Mater. 82, 1–78 (2005).

    CAS  Article  Google Scholar 

  44. 44

    Lobo, R. F., Zones, S. I. & Davis, M. E. Structure-direction in zeolite synthesis. J. Incl. Phenom. Mol. Recognit. Chem. 21, 47–78 (1995).

    CAS  Google Scholar 

  45. 45

    Bull, I. et al. Imposition of polarity on a centrosymmetric zeolite host: The effect of fluoride ions on template ordering in zeolite IFR. J. Am. Chem. Soc. 122, 7128–7129 (2000).

    CAS  Article  Google Scholar 

  46. 46

    Villaescusa, L. A., Wheatley, P. S., Bull, I., Lightfoot, P. & Morris, R. E. The location and ordering of fluoride ions in pure silica zeolites with framework types IFR and STF; implications for the mechanism of zeolite synthesis in fluoride media. J. Am. Chem. Soc. 123, 8797–8805 (2001).

    CAS  Article  Google Scholar 

  47. 47

    Stalder, S. M. & Wilkinson, A. P. Synthesis and characterization of a chiral 3D-framework material: d-Co(en)(3)[H3Ga2P4O16]. Chem. Mater. 9, 2168–2173 (1997).

    CAS  Article  Google Scholar 

  48. 48

    Davis, M. E. & Lobo, R. F. Zeolite and molecular-sieve synthesis. Chem. Mater. 4, 756–768 (1992).

    CAS  Article  Google Scholar 

  49. 49

    Tulashie, S. K., Lorenz, H., Hilfert, L., Edelmann, F. T. & Seidel-Morgenstern, A Potential of chiral solvents for enantioselective crystallization. 1. Evaluation of thermodynamic effects. Cryst. Growth Des. 8, 3408–3414 (2008).

    CAS  Article  Google Scholar 

  50. 50

    Tulashie, S. K., Lorenz, H. & Seidel-Morgenstern, A. Potential of chiral solvents for enantioselective crystallization. 2. Evaluation of kinetic effects. Cryst. Growth Des. 9, 2387–2392 (2009).

    CAS  Article  Google Scholar 

  51. 51

    Morris, R. E. & Weigel, S. J. The synthesis of molecular sieves from non-aqueous solvents. Chem. Soc. Rev. 26, 309–317 (1997).

    CAS  Article  Google Scholar 

  52. 52

    Reichert, W. M. et al. Approaches to crystallization from ionic liquids: complex solvents-complex results, or, a strategy for controlled formation of new supramolecular architectures? Chem. Commun. 4767–4779 (2006).

  53. 53

    Del Popolo, M. G. & Voth, G. A. On the structure and dynamics of ionic liquids. J. Phys. Chem. B 108, 1744–1752 (2004).

    CAS  Article  Google Scholar 

  54. 54

    Cooper, E. R. et al. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 430, 1012–1016 (2004).

    CAS  Article  Google Scholar 

  55. 55

    Morris, R. E. Ionothermal synthesis-ionic liquids as functional solvents in the preparation of crystalline materials. Chem. Commun. 2990–2998 (2009).

  56. 56

    Parnham, E. R. & Morris, R. E. Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids. Acc. Chem. Res. 40, 1005–1013 (2007).

    CAS  Article  Google Scholar 

  57. 57

    Lin, Z. J., Slawin, A. M. Z. & Morris, R. E. Chiral induction in the ionothermal synthesis of a 3-D coordination polymer. J. Am. Chem. Soc. 129, 4880–4881 (2007).

    CAS  Article  Google Scholar 

  58. 58

    Lin, Z. J., Wragg, D. S., Warren, J. E. & Morris, R. E. Anion control in the ionothermal synthesis of coordination polymers. J. Am. Chem. Soc. 129, 10334–10335 (2007).

    CAS  Article  Google Scholar 

  59. 59

    Parnham, E. R. & Morris, R. E. Ionothermal synthesis using a hydrophobic ionic liquid as solvent in the preparation of a novel aluminophosphate chain structure. J. Mater. Chem. 16, 3682–3684 (2006).

    CAS  Article  Google Scholar 

  60. 60

    Zhang, J., Chen, S. M. & Bu, X. H. Multiple functions of ionic liquids in the synthesis of three-dimensional low-connectivity homochiral and achiral frameworks. Angew. Chem. Int. Ed. 47, 5434–5437 (2008).

    CAS  Article  Google Scholar 

  61. 61

    Parnham, E. R., Drylie, E. A., Wheatley, P. S., Slawin, A. M. Z. & Morris, R. E. Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents. Angew. Chem. Int. Ed. 45, 4962–4966 (2006).

    CAS  Article  Google Scholar 

  62. 62

    Walsh, P. J. & Kozlowski, M. C. Fundamentals of Asymmetric Catalysis (University Science Books, 2009).

    Google Scholar 

  63. 63

    Zhang, J., Chen, S., Wu, T., Feng, P. & Bu, X. Homochiral crystallization of microporous framework materials from achiral precursors by chirality catalysis. J. Am. Chem. Soc. 130, 12882–12883 (2008).

    CAS  Article  Google Scholar 

  64. 64

    Kaczorowski, T., Justyniak, I., Lipinska, T., Lipkowski, J. & Lewinski, J. Metal complexes of cinchonine as chiral building blocks: A strategy for the construction of nanotubular architectures and helical coordination polymers. J. Am. Chem. Soc. 131, 5393–5394 (2009).

    CAS  Article  Google Scholar 

  65. 65

    Zhang, J. et al. Manganese and magnesium homochiral materials: decoration of honeycomb channels with homochiral chains. J. Am. Chem. Soc. 129, 14168–14169 (2007).

    CAS  Article  Google Scholar 

  66. 66

    Zhang, J., Chen, S., Wu, T., Nieto, R., Feng, P. & Bu, X. A tale of three carboxylates: Cooperative asymmetric crystallization of 3-D microporous material from achiral precursors. Angew. Chem. Int. Ed. 49, 1267–1270 (2010).

    CAS  Article  Google Scholar 

  67. 67

    Zhang, J., Chen, S. & Bu, X. Nucleotide catalyzed conversion of racemic zeolite-type zincophosphate into enantioenriched crystals. Angew. Chem. Int. Ed. 48, 6049–6051 (2009).

    CAS  Article  Google Scholar 

  68. 68

    Noorduin, W. L. et al. Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light. Nature Chem. 1, 729–732 (2009).

    CAS  Article  Google Scholar 

  69. 69

    Noorduin, W. L., Elias Vlieg, E., Kellogg, R. M. & Kaptein, B. From Ostwald ripening to single chirality. Angew. Chem. Int. Ed. 48, 9600–9606 (2009).

    CAS  Article  Google Scholar 

  70. 70

    D'Urso, A., Randazzo, R., Lo Faro, L. & Purrello R. Vortexes and nanoscale chirality. Angew. Chem. Int. Ed. 49, 108–112 (2010).

    CAS  Article  Google Scholar 

  71. 71

    Parschau, M., Passerone, D., Rieder, K. H., Hug, H. J. & Ernst, K. H. Switching the chirality of single adsorbate complexes. Angew. Chem. Int. Ed. 48, 4065–4068 (2009).

    CAS  Article  Google Scholar 

  72. 72

    Chen, Q. & Richardson, N. V. Enantiomeric interactions between nucleic acid bases and amino acids on solid surfaces. Nature Mater. 2, 324–328 (2003).

    CAS  Article  Google Scholar 

  73. 73

    Haq, S., Liu, N., Humblot, V., Jansen, A. P. J. & Raval, R. Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces. Nature Chem. 1, 409–414 (2009).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morris, R., Bu, X. Induction of chiral porous solids containing only achiral building blocks. Nature Chem 2, 353–361 (2010). https://doi.org/10.1038/nchem.628

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing