Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The rational design of helium bonds

An Addendum to this article was published on 20 June 2014

This article has been updated

Abstract

The chemistry of helium has hitherto been confined to experimental and theoretical analysis of small molecules containing three to five atoms in the gas phase. Here a new suggestion is made for compounds of helium deriving from a recent proposal that five-coordinate carbon might be captured as a frozen SN2 transition state. A series of logical steps, originally discussed as postings and comments to two blogs, led to the outcome described here of a central hypervalent atom bound on one face by a small cyclic carbon ligand, with the other free face having an interaction to a helium atom with the topological properties of a charge-shift rather than a covalent bond. Although high-level theory predicts these helium bonds to be quite short with relatively high stretching frequencies, the kinetic barriers to the loss of helium are predicted to be small, and are not increased by the strategy of having bulky substituents on the ring ligand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A screenshot of an interactive table that compiles calculated properties for molecular compounds of helium.
Figure 2: Form (eigenvectors) of the calculated normal transition state mode (green arrows) at the B2GP-PLYP/TZVPP level for the dissociation/combination of He for two systems.

Similar content being viewed by others

Change history

  • 20 June 2014

    The interactive version of the table shown in Fig. 1 of this Article is now additionally available at http://dx.doi.org/10.6084/m9.figshare.1009575. The online versions of the Article have been amended accordingly.

References

  1. Cambridge crystallographic database http://www.ccdc.cam.ac.uk/ (2009).

  2. Koch, W., Frenking, G., Gauss, J., Cremer, D. & Collins, J. R. Helium chemistry: theoretical predictions and experimental challenge. J. Am. Chem. Soc. 109, 5917–5934 (1987).

    Article  CAS  Google Scholar 

  3. Grandinetti, F. Helium chemistry: a survey of the role of the ionic species. Int. J. Mass Spectrom. 237, 243–267 (2004).

    Article  CAS  Google Scholar 

  4. Wong, M. W. Prediction of a metastable helium compound: HHeF. J. Am. Chem. Soc. 122, 6289–6290 (2000).

    Article  CAS  Google Scholar 

  5. Grochala, W. On Chemical bonding between helium and oxygen. Pol. J. Chem. 83, 87–122 (2009).

    CAS  Google Scholar 

  6. Zou, W., Liu, Y. & Boggs, J. E. Theoretical study of RgMF (Rg = He, Ne; M = Cu, Ag, Au): Bonded structures of helium. Chem. Phys. Lett. 482, 207–210 (2009).

    Article  CAS  Google Scholar 

  7. Lewars, E. G. Helium Compounds, in Book of Modeling Marvels: Computational Anticipation of Novel Molecules (Springer, 2008).

  8. Krapp, A. & Frenking, G. Is this a chemical bond? A theoretical study of Ng2@C60 (Ng = He, Ne, Ar, Kr, Xe). Chem. Eur. J. 13, 8256–8270 (2007).

    Article  CAS  Google Scholar 

  9. Cerpa, E., Krapp, A., Flores-Moreno, R., Donald, K. J. & Merino, G. Influence of endohedral confinement on the electronic interaction between He atoms: A He2@C20H20 case study. Chem. Eur. J. 15, 1985–1990 (2009).

    Article  CAS  Google Scholar 

  10. Cerpa, E., Krapp, A., Vela, A. & Merino, G. The implications of symmetry of the external potential on bond paths. Chem. Eur. J. 14, 10232–10234 (2008).

    Article  CAS  Google Scholar 

  11. Bader, R. F. W. Atoms in Molecules: a Quantum Theory (Oxford Univ. Press, 1990).

  12. Zou, W., Liu, Y., Liu, W., Wang, T. & Boggs, J. E. He@Mo6Cl8F8: A stable complex of helium. J. Phys. Chem. A 114, 646–651 (2010).

    Article  CAS  Google Scholar 

  13. Rzepa, H. S. The importance of being bonded. Nature Chem. 1, 510–512 (2009).

    Article  CAS  Google Scholar 

  14. Shaik, S., Danovich, D., Wu, W. & Hiberty, P. C. Charge-shift bonding and its manifestations in chemistry. Nature Chem. 1, 443–449 (2009).

    Article  CAS  Google Scholar 

  15. Alvarez, S., Hoffmann, R. & Mealli, C. A bonding quandary - or - a demonstration of the fact that scientists are not born with logic. Chem. Eur. J. 15, 8358–8373 (2009).

    Article  CAS  Google Scholar 

  16. Pierrefixe, S. C. A. H., van Stralen, S. J. M., van Stralen, J. N. P., Guerra, C. F. & Bickelhaupt, F. M. Hypervalent carbon atom: “Freezing” the SN2 transition state. Angew. Chem. Int. Ed. 48, 6469–6471 (2009).

    Article  CAS  Google Scholar 

  17. Bachrach, S. M. Pentacoordinate Carbon? http://comporgchem.com/blog/?p=385 (2009).

  18. Fisher, E. L. & Lambert, T. H. Leaving group potential of a substituted cyclopentadienyl anion toward oxidative addition. Org. Lett. 11, 4108–4110 (2009).

    Article  CAS  Google Scholar 

  19. Rzepa, H. S. Capturing Pentacoordinate Carbon? http://www.ch.imperial.ac.uk/rzepa/blog/?p=783 and http://www.ch.imperial.ac.uk/rzepa/blog/?p=811 (2009).

  20. Jutzi, P. et al. The (Me5C5)Si+ cation: A stable derivative of HSi+. Science 305, 849–851 (2004).

    Article  CAS  Google Scholar 

  21. Rzepa, H. S. It's penta-coordinate carbon Spock – but not as we know it! http://www.ch.imperial.ac.uk/rzepa/blog/?p=845 (2009).

  22. Tonner, R., Heydenrych, G. & Frenking, G. First and second proton affinities of carbon bases. ChemPhysChem 9, 1474–1481 (2008).

    Article  CAS  Google Scholar 

  23. Rzepa, H. S. It's Hexa-coordinate carbon Spock - but not as we know it! http://www.ch.imperial.ac.uk/rzepa/blog/?p=878 (2009).

  24. Dohmeier, C., Köppe, R., Robl, C. & Schnöckel, H. Kristallstruktur von [Cp*BBr][AlBr4]. J. Organomet. Chem. 487, 127–130 (1995).

    Article  CAS  Google Scholar 

  25. Takanashi, K. et al. Tetrakis(trimethylsilyl)cyclobutadiene dianion alkaline earth metal salts: new members of the 6π-electron aromatics family. Eur. J. Inorg. Chem. 1752–1755 (2008).

    Article  Google Scholar 

  26. Chiang, T., Kerber, R. C., Kimball, S. D. & Lauher, J. W. (η3-Triphenyl-cyclopropenyl)tricarbonylcobalt. Inorg. Chem. 18, 1687–1691 (1979).

    Article  CAS  Google Scholar 

  27. Casher, O. & Rzepa, H. S. SemanticEye: A semantic web application to rationalize and enhance chemical electronic publishing. J. Chem. Inf. Model. 46, 2396–2411 (2006).

    Article  CAS  Google Scholar 

  28. Dixon, D. A., de Jong, W. A., Peterson, K. A. & McMahon, T. B. Methyl cation affinities of rare gases and nitrogen and the heat of formation of diazomethane. J. Phys. Chem. A 109, 4073–4080 (2005).

    Article  CAS  Google Scholar 

  29. Tarnopolsky, A., Karton, A., Sertchook, R., Vuzman D., Martin, J. M. L. Double-hybrid functionals for thermochemical kinetics. J. Phys. Chem.A 112, 3–8 (2008).

    Article  CAS  Google Scholar 

  30. Goerigk, L., Moellmann, J. & Grimme, S. Computation of accurate excitation energies for large organic molecules with double-hybrid density functionals. Phys. Chem. Chem. Phys. 11, 4611–4620 (2009).

    Article  CAS  Google Scholar 

  31. Radom, L., Gill, P. M. W., Wong, M. W. & Nobes, R. H. Multiply-charged cations: remarkable structures and stabilities. Pure Appl. Chem. 60, 183–188 (1988).

    Article  CAS  Google Scholar 

  32. Becke, A. D. & Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990).

    Article  CAS  Google Scholar 

  33. Savin, A., Silvi, B. & Coionna, F. Topological analysis of the electron localization function applied to delocalized bonds. Can. J. Chem. 74, 1088–1096 (1996).

    Article  CAS  Google Scholar 

  34. Avelar, A., Tham, F. S. & Reed, C. A. Superacidity of boron acids H2(B12X12) (X=Cl, Br). Angew. Chem. Int Ed. 48, 3491–3493 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry S. Rzepa.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rzepa, H. The rational design of helium bonds. Nature Chem 2, 390–393 (2010). https://doi.org/10.1038/nchem.596

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.596

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing