Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces

Abstract

Organic/metal interfaces control the performance of many optoelectronic organic devices, including organic light-emitting diodes or field-effect transistors. Using scanning tunnelling microscopy, low-energy electron diffraction, X-ray photoemission spectroscopy, near-edge X-ray absorption fine structure spectroscopy and density functional theory calculations, we show that electron transfer at the interface between a metal surface and the organic electron acceptor tetracyano-p-quinodimethane leads to substantial structural rearrangements on both the organic and metallic sides of the interface. These structural modifications mediate new intermolecular interactions through the creation of stress fields that could not have been predicted on the basis of gas-phase neutral tetracyano-p-quinodimethane conformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structure of TCNQ, TCNQ•− and TCNQ2−.
Figure 2: Elongated self-assembled islands of TCNQ on Cu(100).
Figure 3: Highly ordered self-assembled monolayer of TCNQ on Cu(100).
Figure 4: Charge transfer in a self-assembled monolayer of TCNQ on Cu(100).
Figure 5: NEXAFS measurements of TCNQ / Cu(100).
Figure 6: Structural rearrangements at both sides of the TCNQ/Cu(100) interface from DFT calculations.

Similar content being viewed by others

References

  1. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  2. Moons, E. Conjugated polymer blends: linking film morphology to performance of light emitting diodes and photodiodes. J. Phys. Condens. Matter. 14, 12235–12260 (2002).

    Article  CAS  Google Scholar 

  3. Cicoira, F. & Santato, C. Organic light emitting field effect transistors: advances and perspectives. Adv. Funct. Mater. 17, 3421–3434 (2007).

    Article  CAS  Google Scholar 

  4. Blom, P. W. M., Mihailetchi, V. D., Koster, L. J. A. & Markov, D. E. Device physics of polymer:fullerene bulk heterojunction solar cells. Adv. Mater. 19, 1551–1566 (2007).

    Article  CAS  Google Scholar 

  5. Brabec, C. J., Sariciftci, N. S. & Hummelen, J. C. Plastic solar cells. Adv. Funct. Mater. 11, 15–26 (2001).

    Article  CAS  Google Scholar 

  6. Jérome, D. Organic conductors: from charge density wave TTF–TCNQ to superconducting (TMTSF)2PF6 . Chem. Rev. 104, 5565–5591 (2004).

    Article  Google Scholar 

  7. Manriquez, J. M., Yee, G. T., Scott McLean, R., Epstein, A. J. & Miller, J. S. A room-temperature molecular/organic-based magnet. Science 252, 1415–1417 (1991).

    Article  CAS  Google Scholar 

  8. Jain, R. et al. High-temperature metallorganic magnets. Nature 445, 291–294 (2007).

    Article  CAS  Google Scholar 

  9. Gambardella, P. et al. Supramolecular control of the magnetic anisotropy in two-dimensional high-spin Fe arrays at a metal interface. Nature Mater. 104, 189–193 (2009).

    Article  Google Scholar 

  10. Zhu, X.-Y. Electronic structure and electron dynamics at molecule–metal interfaces: implications for molecule based electronics. Surf. Sci. Rep. 56, 1–83 (2004).

    Article  CAS  Google Scholar 

  11. Lindstrom, C. D. & Zhu, X.-Y. Photoinduced electron transfer at molecule–metal interfaces. Chem. Rev. 106, 4281–4300 (2006).

    Article  CAS  Google Scholar 

  12. Otero, R. et al. An organic donor/acceptor lateral superlattice at the nanoscale. Nano Lett. 7, 2602–2607 (2007).

    Article  CAS  Google Scholar 

  13. Barth, J. V., Constantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).

    Article  CAS  Google Scholar 

  14. Wang, L., Chen, W. & Thye Shen Wee, A. Charge-transfer across the molecule/metal interface using the core hole clock technique. Surf. Sci. Rep. 63, 465–386 (2008).

    Article  CAS  Google Scholar 

  15. Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605–625 (1999).

    Article  CAS  Google Scholar 

  16. Crispin, X. et al. Characterization of the interface dipole at organic/metal interfaces. J. Am. Chem. Soc. 124, 8131–8141 (2002).

    Article  CAS  Google Scholar 

  17. Koch, N., Duhm, S., Rabe, J. P., Vollmer, A. & Johnson, R. L. Optimized hole injection with strong electron acceptors at organic–metal interfaces. Phys. Rev. Lett. 95, 237601 (2005).

    Article  Google Scholar 

  18. Witte, G., Lukas, S., Bagus, P. S. & Wöll, C. Vacuum level alignment at organic/metal junctions: ‘cushion’ effect and the interface dipole. Appl. Phys. Lett. 87, 263502 (2005).

    Article  Google Scholar 

  19. Braun, S. & Salaneck, W. R. Fermi level pinning at interfaces with tetrafluorotetracyanoquinodimethane (F4-TCNQ): the role of integer charge transfer states. Chem. Phys. Lett. 438, 259–262 (2007).

    Article  CAS  Google Scholar 

  20. Romaner, L. et al. Impact of bidirectional charge transfer and molecular distortions on the electronic structure of a metal–organic interface. Phys. Rev. Lett. 99, 256801 (2007).

    Article  Google Scholar 

  21. Bedwani, S., Wegner, D., Crommie, M. F. & Rochefort, A. Strongly reshaped organic–metal interfaces: tetracyanoethylene on Cu(100). Phys. Rev. Lett. 101, 216105 (2008).

    Article  Google Scholar 

  22. Torrance, J. B. The difference between metallic and insulating salts of tetracyanoquinodimethane (TCNQ): how to design an organic metal. Acc. Chem. Res. 12, 79–86 (1979).

    Article  CAS  Google Scholar 

  23. Wegner, D. et al. Single-molecule charge transfer and bonding at an organic/inorganic interface: tetracyanoethylene on noble metals. Nano Lett. 8, 131–135 (2008).

    Article  CAS  Google Scholar 

  24. Milián, B., Pou-Amérigo, R., Viruela, R. & Ortí, E. A theoretical study of neutral and reduced tetracyano-p-quinodimethane (TCNQ). J. Mol. Struct. 709, 97–102 (2004).

    Article  Google Scholar 

  25. Kamna, M. M., Graham, T. M., Love, J. C. & Weiss, P. S. Strong electronic perturbation of the Cu(111) surface by 7,7’,8,8’-tetracyanoquinonedimethane. Surf. Sci. 419, 12–23 (1998).

    Article  CAS  Google Scholar 

  26. Fernández-Torrente, I., Franke, K. J. & Pascual, J. I. Structure and electronic configuration of tetracyanoquinodimethane layers on a Au(111) surface. Int. J. Mass Spectrosc. 277, 269–273 (2008).

    Article  Google Scholar 

  27. Stöhr, J. & Outka, D. A. Determination of molecular orientations on surfaces from the angular dependence of near-edge X-ray-absorption fine-structure spectra. Phys. Rev. B 36, 7891–1905 (1987).

    Article  Google Scholar 

  28. Stöhr, J. NEXAFS Spectroscopy (Spinger-Verlag, 2003).

    Google Scholar 

  29. Bässler, M. et al. Near edge X-ray absorption fine structure resonances of quinoide molecules. Langmuir 16, 6674–6681 (2000).

    Article  Google Scholar 

  30. Sing, M. et al. Structural versus electronic origin of renormalized band widths in TTF–TCNQ: an angular dependent NEXAFS study. Phys. Rev. B 76, 245119 (2007).

    Article  Google Scholar 

  31. Fraxedas, J. et al. Characterization of the unoccupied and partially occupied states of TTF–TCNQ by XANES and first-principles calculations. Phys. Rev. B 68, 195115 (2003).

    Article  Google Scholar 

  32. González Lakunza, N. Study of the geometry and electronic structure of self-assembled monolayers on the Au(111) surface. PhD thesis, Universidad del Pais Vasco (2009).

  33. Kern, K. et al. Long-range spatial self-organization in the adsorbate-induced restructuring of surfaces: Cu(110)–(2×1)O. Phys. Rev. Lett. 67, 855–858 (1991).

    Article  CAS  Google Scholar 

  34. Zeppenfeld, P. et al. Size relation for surface systems with long-range interactions. Phys. Rev. Lett. 72, 2737–2740 (1994).

    Article  CAS  Google Scholar 

  35. Prevot, G. et al. Elastic origin of the O/Cu(110) self-ordering evidenced by GIXD. Surf. Sci. 549, 52–56 (2004).

    Article  CAS  Google Scholar 

  36. Tait, S. L. et al. One-dimensional self-assembled molecular chains on Cu(100): interplay between surface-assisted coordination chemistry and substrate commensurability. J. Phys. Chem. C 111, 10982–10987 (2007).

    Article  CAS  Google Scholar 

  37. Tait, S. L. Function follows form: exploring 2D supramolecular assembly at surfaces. ACS Nano 2, 617–621 (2008).

    Article  CAS  Google Scholar 

  38. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron–gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  39. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  40. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  41. Methfessel, A. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Studies at MPI Stuttgart were supported by the European Science Foundation (ESF) EUROCORES-SONS2 programme FunSMARTs II. Work in Madrid was financed by the Spanish MICINN (projects FIS2007-61114, FIS2007-60064, NAN2004-08881-C02-01, CTQ2006-08558 and Consolider CSD2007-00010), the Comunidad de Madrid (projects S-0505-MAT-0194 and S2009/MAT-1726) and the European Union (‘MONET’ project, MEST-CT-2005-020908). R.O. thanks the MEC for salary support through the Ramón & Cajal programme. All the computations were performed at Mare Nostrum Barcelona Supercomputer Center and Centro de Computación Científica de la UAM.

Author information

Authors and Affiliations

Authors

Contributions

STM experiments were carried out by T.-C.T., C.U. and M.T. T.-C.T. and C.U. contributed equally to this work. T.-C.T., C.U. and D.E. were involved in STM data analysis. Y.W., M.A. and F.M. carried out the DFT calculations shown in this paper. T.-C.T., S. L.T., M.K. and U.S. performed the XPS and LEED measurements and analysis, and T.-C.T., A.L., S.L.T. and A.N. performed the NEXAFS experiments and analysis, supervised by C.W. The molecules were provided by M.A.H. and N.M. and they supervised the chemical discussions. R.O., J.M.G. and S.L.T. wrote the paper and coordinated all the experimental work. Experiments were planned and designed by R.O., J.M.G., S.L.T., U.S. and N.L. under the supervision of K.K. and R.M.

Corresponding authors

Correspondence to Roberto Otero or Steven L. Tait.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 561 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, TC., Urban, C., Wang, Y. et al. Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces. Nature Chem 2, 374–379 (2010). https://doi.org/10.1038/nchem.591

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.591

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing