Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters

Abstract

Finely dispersed nanometre-scale gold particles are known to catalyse several oxidation reactions in aerobic, ambient conditions. The catalytic activity has been explained by various complementary mechanisms, including support effects, particle-size-dependent metal–insulator transition, charging effects, frontier orbital interactions and geometric fluxionality. We show, by considering a series of robust and structurally well-characterized ligand-protected gold clusters with diameters between 1.2 and 2.4 nm, that electronic quantum size effects, particularly the magnitude of the so-called HOMO–LUMO energy gap, has a decisive role in binding oxygen to the nano-catalyst in an activated form. This can lead to the oxidation reaction 2CO + O2 → 2CO2 with low activation barriers. Binding of dioxygen is significant only for the smallest particles with a metal core diameter clearly below 2 nm. Our results suggest a potentially viable route to practical applications using ligand-protected gold clusters for green chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlation between the binding energy of O2 to partially protected clusters 1–5 and the HOMO–LUMO gap of the corresponding fully protected cluster.
Figure 2: Bonding and activation of O2 by the partially protected cluster 1.
Figure 3: The two LH steps for CO oxidation cycle 2CO + O2 → 2CO2 by cluster 1.
Figure 4: The first LH step of the complete CO oxidation cycle by cluster 2′, which originally has two metallic electrons over the HOMO–LUMO gap of the parent cluster.
Figure 5: Dynamics of the formation and release of CO2 at cluster 1.

Similar content being viewed by others

References

  1. Hutchings, G. J. & Joffe, R. A novel process for the co-synthesis of vinyl-chloride monomer and sodium-carbonate using a gold catalyst. Appl. Catal. 20, 215–218 (1986).

    Article  Google Scholar 

  2. Haruta, M., Kobayashi, T., Sano, H. & Yamada, N. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0 °C. Chem. Lett. 2, 405–408 (1987).

    Article  Google Scholar 

  3. Haruta, M. Size and support dependency in the catalysis by gold. Catal. Today 36, 153–166 (1997).

    Article  CAS  Google Scholar 

  4. Bond, G. C. & Thompson, D. Catalysis by gold. Cat. Rev. Sci. Eng. 41, 319–388 (1999).

    Article  CAS  Google Scholar 

  5. Valden, M., Lai, X. & Goodman, W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647–1650 (1998).

    Article  CAS  Google Scholar 

  6. Sanchez, A. et al. When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A 103, 9573–9578 (1999).

    Article  CAS  Google Scholar 

  7. Häkkinen, H., Abbet, S., Sanchez, A., Heiz, U. & Landman, U. Structural, electronic and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. Angew. Chem. Int. Ed. 42, 1297–1300 (2003).

    Article  Google Scholar 

  8. Yoon, B. et al. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307, 403–407 (2005).

    Article  CAS  Google Scholar 

  9. Hughes, M. D. et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437, 1132–1135 (2005).

    Article  CAS  Google Scholar 

  10. Turner, M. et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454, 981–983 (2008).

    Article  CAS  Google Scholar 

  11. Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P. & Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331–1335 (2008).

    Article  CAS  Google Scholar 

  12. Ishida, T. & Haruta, M. Gold catalysts: towards sustainable chemistry. Angew. Chem. Int. Ed. 46, 7154–7156 (2008).

    Article  Google Scholar 

  13. Meyer, R., Lemire, C., Shaikhutdinov, S. & Freund, H.-J. Surface chemistry of gold catalysis. Gold Bull. 37, 72–124 (2004).

    Article  CAS  Google Scholar 

  14. Lopez, N. et al. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 223, 232–235 (2004).

    Article  CAS  Google Scholar 

  15. Kacprzak, K. A., Akola, J. & Häkkinen, H. First-principles simulations of hydrogen peroxide formation catalyzed by small neutral gold clusters. Phys. Chem. Chem. Phys. 11, 6359–6364 (2009).

    Article  CAS  Google Scholar 

  16. de Heer, W. A. The physics of simple metal clusters: experimental aspects and simple concepts. Rev. Mod. Phys. 65, 611–676 (1993).

    Article  CAS  Google Scholar 

  17. Taylor, K. J., Pettiette-Hall, C. L., Cheshnovsky, O. & Smalley, R. E. Ultraviolet photoelectron-spectra of coinage metal-clusters. J. Chem. Phys. 96, 3319–3329 (1992).

    Article  CAS  Google Scholar 

  18. Häkkinen, H. Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem. Soc. Rev. 37, 1847–1859 (2008).

    Article  Google Scholar 

  19. Lin, X. et al. Quantum well states in two-dimensional gold clusters on MgO thin films. Phys. Rev. Lett. 102, 206801 (2009).

    Article  CAS  Google Scholar 

  20. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007).

    Article  CAS  Google Scholar 

  21. Walter, M. et al. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl Acad. Sci. USA 105, 9157–9162 (2008).

    Article  CAS  Google Scholar 

  22. Akola, J., Walter, M., Whetten, R. L., Häkkinen, H. & Grönbeck, H. On the structure of thiolate-protected Au25 . J. Am. Chem. Soc. 130, 3756–3757 (2008).

    Article  CAS  Google Scholar 

  23. Heaven, M. W., Dass, A. White, P. S., Holt, K. M. & Murray, R. W. Crystal structure of the gold nanoparticle [N(C8H17)(4)][Au-25(SCH2CH2Ph)(18)]. J. Am. Chem. Soc. 130, 3754–3755 (2008).

    Article  CAS  Google Scholar 

  24. Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C. & Jin, R. Correlating the crystal structure of a thiol-protected Au-25 cluster and optical properties. J. Am. Chem. Soc. 130, 5883–5885 (2008).

    Article  CAS  Google Scholar 

  25. Lopez-Acevedo, O., Akola, J., Whetten, R. L., Grönbeck, H. & Häkkinen, H. Structure and bonding in the ubiquitous icosahedral metallic gold cluster Au144(SR)60 . J. Phys. Chem. C 113, 5035–5038 (2009).

    Article  CAS  Google Scholar 

  26. Teo, B. K., Shi, X. B. & Zhang, H. Pure gold cluster of 1-9-9-1-9-9-1 layered structure—a novel 39-metal-atom cluster [(PH3P)14Au39Cl6]Cl2 with an interstitial gold atom in a hexagonal antiprismatic cage. J. Am. Chem. Soc. 114, 2743–2745 (1992).

    Article  CAS  Google Scholar 

  27. Häkkinen, H., Walter, M. & Grönbeck, H. Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. J. Phys. Chem. B 110, 9927–9931 (2006).

    Article  Google Scholar 

  28. Hammer, B. & Norskov, J. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    Article  CAS  Google Scholar 

  29. Häkkinen, H. & Landman, U. Gas-phase catalytic oxidation of CO by Au2 . J. Am. Chem. Soc. 123, 9704–9705 (2001).

    Article  Google Scholar 

  30. Socaciu, L. D. et al. Catalytic CO oxidation by free Au2: experiment and theory. J. Am. Chem. Soc. 125, 10437–10445 (2003).

    Article  CAS  Google Scholar 

  31. Abbet, S., Heiz, U., Häkkinen, H. & Landman, U. CO oxidation on a single Pd atom supported on magnesia. Phys. Rev. Lett. 86, 5950–5953 (2001).

    Article  CAS  Google Scholar 

  32. Leuchtner, R. E., Harms, A. C. & Castleman, A. W. Jr. Thermal metal cluster anion reactions: behaviour of aluminum clusters with oxygen. J. Chem. Phys. 91, 2753–2754 (1989).

    Article  CAS  Google Scholar 

  33. Khanna, S. N. & Jena, P. Assembling crystals from clusters. Phys. Rev. Lett. 69, 1664–1667 (1992).

    Article  CAS  Google Scholar 

  34. Castleman, A. W. Jr. & Khanna, S. N. Clusters, superatoms and building blocks of new materials. J. Phys. Chem. C 113, 2664–2675 (2009).

    Article  CAS  Google Scholar 

  35. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. & Whyman, R. Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid–liquid system. Chem. Commun. 801–802 (1994).

  36. Zheng, N. & Stucky, G. D. A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J. Am. Chem. Soc. 128, 14278–14280 (2006).

    Article  CAS  Google Scholar 

  37. Liu, Y., Tsunoyama, H., Akita, T. & Tsukuda, T. Efficient and selective epoxidation of styrene with TBHP catalyzed by Au25 clusters on hydroxyapatite. Chem. Commun. 46, 550–552 (2010).

    Article  CAS  Google Scholar 

  38. Tsunoyama, H., Ichikuni, N., Sakurai, H. & Tsukuda, T. Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J. Am. Chem. Soc. 131, 7086–7093 (2009).

    Article  CAS  Google Scholar 

  39. Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005).

    Article  Google Scholar 

  40. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  41. Perdew, J. P., Burke, K. & Ernzerhoft, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  42. Tao, J., Perdew, J. P., Staroverov, V. N. & Scuseria, G. E. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401 (2003).

    Article  Google Scholar 

  43. Jonsson, H., Mills, G. & Jacobsen, K. W. Classical and Quantum Dynamics in Condensed Phase Systems (eds Berne, B. J., Cicotti, G. & Coker, D. F.) (World Scientific, 1998).

    Google Scholar 

  44. Henkelman, G., Uberuaga B. P. & Jonsson, H. A climbing-image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  45. Bader, R. W. F. Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, 1990).

    Google Scholar 

  46. CPMD V3.13 Copyright IBM Corp 1990-2008, Copyright MPI für Festkörperforschung Stuttgart 1997–2001 (http://www.cpmd.org).

  47. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).

    Article  CAS  Google Scholar 

  48. Car, R. & Parrinello, M. Unified approach for molecular-dynamics and density-functional-theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Grönbeck for fruitful discussions. This research was supported by the Academy of Finland. Computer resources were provided by the CSC—Finnish IT Center for Science in Espoo.

Author information

Authors and Affiliations

Authors

Contributions

H.H. planned the research and wrote the manuscript draft. O.L.-A., K.K. and J.A. performed calculations and analysed the results. All authors contributed to editing the manuscript.

Corresponding author

Correspondence to Hannu Häkkinen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1653 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez-Acevedo, O., Kacprzak, K., Akola, J. et al. Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nature Chem 2, 329–334 (2010). https://doi.org/10.1038/nchem.589

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.589

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing