Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Million-fold activation of the [Fe2(µ-O)2] diamond core for C–H bond cleavage

Abstract

In biological systems, the cleavage of strong C–H bonds is often carried out by iron centres—such as that of methane monooxygenase in methane hydroxylation—through dioxygen activation mechanisms. High valent species with [Fe2(µ-O)2] diamond cores are thought to act as the oxidizing moieties, but the synthesis of complexes that cleave strong C–H bonds efficiently has remained a challenge. We report here the conversion of a synthetic complex with a valence-delocalized [Fe3.5(µ-O)2Fe3.5]3+ diamond core (1) into a complex with a valence-localized [HO–FeIII–O–FeIV=O]2+ open core (4), which cleaves C–H bonds over a million-fold faster. This activity enhancement results from three factors: the formation of a terminal oxoiron(iv) moiety, the conversion of the low-spin (S = 1) FeIV=O centre to a high-spin (S = 2) centre, and the concentration of the oxidizing capability to the active terminal oxoiron(iv) moiety. This suggests that similar isomerization strategies might be used by nonhaem diiron enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interconversions among high-valent diiron complexes described in this study.
Figure 2: Ultraviolet–visible (UV–vis) and EPR spectra showing the reduction of 3 to 4.
Figure 3: Characterization of 4 by Mössbauer spectroscopy.
Figure 4: Graphic comparison of oxidative reactivities of various iron(iv) complexes.
Figure 5: Reaction of 4 with DHA studied by UV–vis spectroscopy.

Similar content being viewed by others

References

  1. Christmann, M. Selective oxidation of aliphatic C–H bonds in the synthesis of complex molecules. Angew. Chem. Int. Ed. 47, 2740–2742 (2008).

    Article  CAS  Google Scholar 

  2. Sono, M., Roach, M. P., Coulter, E. D. & Dawson, J. H. Heme-containing oxygenases. Chem. Rev. 96, 2841–2887 (1996).

    Article  CAS  Google Scholar 

  3. Wallar, B. J. & Lipscomb, J. D. Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem. Rev. 96, 2625–2658 (1996).

    Article  CAS  Google Scholar 

  4. Solomon, E. I. et al. Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem. Rev. 100, 235–349 (2000).

    Article  CAS  Google Scholar 

  5. Costas, M., Mehn, M. P., Jensen, M. P. & Que, L., Jr. Oxygen activation at mononuclear nonheme iron: Enzymes, intermediates, and models. Chem. Rev. 104, 939–986 (2004).

    Article  CAS  Google Scholar 

  6. Krebs, C., Fujimori, D. G., Walch, C. T. & Bollinger, J. M. Jr. Non-heme Fe(iv)–oxo intermediates. Acc. Chem. Res. 40, 484–492 (2007).

    Article  CAS  Google Scholar 

  7. Fujii, H. Electronic structure and reactivity of high-valent oxo iron porphyrins. Coord. Chem. Rev. 226, 51–60 (2002).

    Article  CAS  Google Scholar 

  8. Groves, J. T. in Cytochrome P450: Structure, Mechanism, and Biochemistry 3rd edn (ed. Ortiz de Montellano, P. R.) 1–43 (Kluwer Academic/Plenum Publishers, 2005).

    Book  Google Scholar 

  9. Shu, L. et al. An FeIV2O2 diamond core structure for the key intermediate Q of methane monooxygenase. Science 275, 515–518 (1997).

    Article  CAS  Google Scholar 

  10. Siegbahn, P. E. M. Theoretical model studies of the iron dimer complex of MMO and RNR. Inorg. Chem. 38, 2880–2889 (1999).

    Article  CAS  Google Scholar 

  11. Baik, M.-H., Newcomb, M., Friesner, R. A. & Lippard, S. J. Mechanistic studies on the hydroxylation of methane by methane monooxygenase. Chem. Rev. 103, 2385–2420 (2003).

    Article  CAS  Google Scholar 

  12. Riggs-Gelasco, P. J. et al. EXAFS characterization of the intermediate X generated during the assembly of the Escherichia coli ribonucleotide reductase R2 diferric-tyrosyl radical cofactor. J. Am. Chem. Soc. 120, 849–860 (1998).

    Article  CAS  Google Scholar 

  13. Younker, J. M. et al. Structural analysis of the Mn(iv)/Fe(iii) cofactor of Chlamydia trachomatis ribonucleotide reductase by extended X-ray absorption fine structure spectroscopy and density functional theory calculations. J. Am. Chem. Soc. 130, 15022–15027 (2008).

    Article  CAS  Google Scholar 

  14. Dong, Y. et al. A high-valent nonheme iron intermediate. Structure and properties of [Fe2(μ−O)2(5-Me-TPA)2](ClO4)3 . J. Am. Chem. Soc. 117, 2778–2792 (1995).

    Article  CAS  Google Scholar 

  15. Hsu, H.-F., Dong, Y., Shu, L., Young, V. G., Jr. & Que, L., Jr. Crystal structure of a synthetic high-valent complex with an Fe2(μ-O)2 diamond core. Implications for the core structures of methane monooxygenase intermediate Q and ribonucleotide reductase intermediate X. J. Am. Chem. Soc. 121, 5230–5237 (1999).

    Article  CAS  Google Scholar 

  16. Xue, G. et al. A synthetic precedent for the [FeIV2(μ-O)2] diamond core proposed for methane monooxygenase intermediate Q. Proc. Natl Acad. Sci. USA 104, 20713–20718 (2007).

    Article  CAS  Google Scholar 

  17. Xue, G., Fiedler, A. T., Martinho, M., Münck, E. & Que, L., Jr. Insights into the P-to-Q conversion in the catalytic cycle of methane monooxygenase from a synthetic model system. Proc. Natl Acad. Sci. USA 105, 20615–20620 (2008).

    Article  CAS  Google Scholar 

  18. Kumar, D., Hirao, H., Que, L., Jr. & Shaik, S. Theoretical investigation of C–H hydroxylation by (N4Py)FeIV=O2+: An oxidant more powerful than P450? J. Am. Chem. Soc. 127, 8026–8027 (2005).

    Article  CAS  Google Scholar 

  19. Hirao, H., Kumar, D., Que, L., Jr & Shaik, S. Two-state reactivity in alkane hydroxylation by non-heme iron-oxo complexes. J. Am. Chem. Soc. 128, 8590–8606 (2006).

    Article  CAS  Google Scholar 

  20. Decker, A. et al. Spectroscopic and quantum chemical studies on low-spin FeIV=O complexes: Fe–O bonding and its contributions to reactivity. J. Am. Chem. Soc. 129, 15983–15996 (2007).

    Article  CAS  Google Scholar 

  21. Shan, X. & Que, L., Jr. High-valent nonheme iron-oxo species in biomimetic oxidations. J. Inorg. Biochem. 100, 421–433 (2006).

    Article  CAS  Google Scholar 

  22. Que, L., Jr. The road to non-heme oxoferryls and beyond. Acc. Chem. Res. 40, 493–500 (2007).

    Article  CAS  Google Scholar 

  23. Pestovsky, O. et al. Aqueous FeIV=O: Spectroscopic identification and oxo group exchange. Angew. Chem. Int. Ed. 44, 6871–6874 (2005).

    Article  CAS  Google Scholar 

  24. Dong, Y., Que, L., Jr., Kauffmann, K. & Münck, E. An exchange-coupled complex with localized high-spin FeIV and FeIII sites of relevance to cluster X of Escherichia coli ribonucleotide reductase. J. Am. Chem. Soc. 117, 11377–11378 (1995).

    Article  CAS  Google Scholar 

  25. Zheng, H., Yoo, S. J., Münck, E. & Que, L., Jr. The flexible Fe2(μ-O)2 diamond core: A terminal iron(iv)-oxo species generated from the oxidation of a bis(μ-oxo)diiron(iii) complex. J. Am. Chem. Soc. 122, 3789–3790 (2000).

    Article  CAS  Google Scholar 

  26. England, J. et al. A synthetic high-spin oxoiron(iv) complex. Generation, spectroscopic characterization and reactivity. Angew. Chem. Int. Ed. 48, 3622–3626 (2009).

    Article  CAS  Google Scholar 

  27. Gupta, R. & Borovik, A. S. Monomeric MnIII/II and FeIII/II complexes with terminal hydroxo and oxo ligands: Probing reactivity via O–H bond dissociation energies. J. Am. Chem. Soc. 125, 13234–13242 (2003).

    Article  CAS  Google Scholar 

  28. Ravi, N., Bollinger, J. M., Jr., Huynh, B. H., Edmondson, D. E. & Stubbe, J. Mechanism of assembly of the tyrosyl radical-diiron(iii) cofactor of E. coli ribonucleotide reductase. 1. Mössbauer characterization of the diferric radical precursor. J. Am. Chem. Soc. 116, 8007–8014 (1994).

    Article  CAS  Google Scholar 

  29. Sturgeon, B. E. et al. Reconsideration of X, the diiron intermediate formed during cofactor assembly in E. coli ribonucleotide reductase. J. Am. Chem. Soc. 118, 7551–7557 (1996).

    Article  CAS  Google Scholar 

  30. Münck, E. in Physical Methods in Bioinorganic Chemistry. Spectroscopy and Magnetism (ed Que, L. Jr.) 287–319 (University Science Books, 2000).

    Google Scholar 

  31. Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007).

    Book  Google Scholar 

  32. Bollinger, J. M., Jr. & Krebs, C. Stalking intermediates in oxygen activation by iron enzymes: Motivation and method. J. Inorg. Biochem. 100, 586–605 (2006).

    Article  CAS  Google Scholar 

  33. Martinho, M. et al. Mössbauer and DFT study of the ferromagnetically coupled diiron(iv) precursor to a complex with an FeIV2O2 diamond core. J. Am. Chem. Soc. 131, 5823–5830 (2009).

    Article  CAS  Google Scholar 

  34. Shaik, S., Hirao, H. & Kumar, D. Reactivity of high-valent iron-oxo species in enzymes and synthetic reagents: a tale of many states. Acc. Chem. Res. 40, 523–542 (2007).

    Article  Google Scholar 

  35. Michel, C. & Baerends, E. J. What singles out the FeO2+ moiety? A density-functional theory study of the methane-to-methanol reaction catalyzed by the first row transition-metal oxide dications MO(H2O)p2+, M=V-Cu. Inorg. Chem. 48, 3628–3638 (2009).

    Article  CAS  Google Scholar 

  36. Han, A.-R. et al. Direct evidence for an iron(iv)-oxo porphyrin π-cation radical as an active oxidant in catalytic oxygenation reactions. Chem. Commun. 2008, 1076–1078 (2008).

    Article  Google Scholar 

  37. Bell, S. R. & Groves, J. T. A highly reactive P450 model compound I. J. Am. Chem. Soc. 131, 9640–9641 (2009).

    Article  CAS  Google Scholar 

  38. Wang, D., Farquhar, E. R., Stubna, A., Münck, E. & Que, L., Jr. A diiron(iv) complex that cleaves strong C–H and O–H bonds. Nature Chem. 1, 145–150 (2009).

    Article  CAS  Google Scholar 

  39. Mayer, J. M. Hydrogen atom abstraction by metal-oxo complexes: Understanding the analogy with organic radical reactions. Acc. Chem. Res. 31, 441–450 (1998).

    Article  CAS  Google Scholar 

  40. Bordwell, F. G., Cheng, J.-P., Ji, G.-Z., Satish, A. V. & Zhang, X. Bond dissociation energies in DMSO related to the gas phase. J. Am. Chem. Soc. 113, 9790–9795 (1991).

    Article  CAS  Google Scholar 

  41. Gardner, K. A. & Mayer, J. M. Understanding C–H bond oxidations: H and H transfer in the oxidation of toluene by permanganate. Science 269, 1849–1851 (1995).

    Article  CAS  Google Scholar 

  42. Augustin-Nowacka, D. & Chmurzyňski, L. A potentiometric study of acid-base equilibria of substituted pyridines in acetonitrile. Anal. Chim. Acta 381, 215–220 (1999).

    Article  CAS  Google Scholar 

  43. Yin, G. et al. Oxidative reactivity difference among the metal oxo and metal hydroxo moieties: ph dependent hydrogen abstraction by a manganese(iv) complex having two hydroxide ligands. J. Am. Chem. Soc. 130, 16245–16253 (2008).

    Article  CAS  Google Scholar 

  44. Parsell, T. H., Yang, M.-Y. & Borovik, A. S. C-H Bond Cleavage with reductants: Re-investigating the reactivity of monomeric MnIII/IV-oxo complexes and the role of oxo ligand basicity. J. Am. Chem. Soc. 131, 2762–2763 (2009).

    Article  CAS  Google Scholar 

  45. Johansson, A. J., Noack, H., Siegbahn, P. E. M., Xue, G. & Que, L., Jr. Observed enhancement of the catalytic activity of a biomimetic diiron complex by the addition of water - mechanistic insights from theoretical modeling. Dalton Trans. 4741–4750 (2009).

  46. Siegbahn, P. E. M. & Crabtree, R. H. Mechanism of C–H Activation by diiron methane monooxygenases: quantum chemical studies. J. Am. Chem. Soc. 119, 3103–3113 (1997).

    Article  CAS  Google Scholar 

  47. Rinaldo, D., Philipp, D. M., Lippard, S. J. & Friesner, R. A. Intermediates in dioxygen activation by methane monooxygenase: A QM/MM study. J. Am. Chem. Soc. 129, 3135–3147 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants GM38767 (to L.Q.) and EB-001475 (to E.M.).

Author information

Authors and Affiliations

Authors

Contributions

G.X., E.M. and L.Q. conceived and designed the experiments; G.X. and R.D.H. performed the experiments and analysed the data; G.X., R.D.H., E.M. and L.Q. co-wrote the paper.

Corresponding authors

Correspondence to Eckard Münck or Lawrence Que Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2078 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, G., De Hont, R., Münck, E. et al. Million-fold activation of the [Fe2(µ-O)2] diamond core for C–H bond cleavage. Nature Chem 2, 400–405 (2010). https://doi.org/10.1038/nchem.586

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.586

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing