Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Face-directed self-assembly of an electronically active Archimedean polyoxometalate architecture

Abstract

The convergent assembly of metal–organic frameworks has enabled the design of porous materials using a structural building unit approach, but functional systems incorporating pre-assembled structural building unit ‘pore’ openings are rare. Here, we show that the face-directed assembly of a ring-shaped macrocyclic polyoxometalate structural building unit, {P8W48O184}40− with an integrated 1-nm pore as an ‘aperture synthon’, with manganese linkers yields a vast three-dimensional extended framework architecture based on a truncated cuboctahedron. The 1-nm-diameter entrance pores of the {P8W48O184}40− structural building unit lead to approximately spherical 7.24-nm3 cavities containing exchangeable alkali-metal cations that can be replaced by transition-metal ions through a cation exchange process. Control over this process can be exerted by either electrochemically switching the overall framework charge by manipulating the oxidation state of the manganese linker ions, or by physically gating the pores with large organic cations, thus demonstrating how metal–organic framework-like structures with integrated pores and new physical properties can be assembled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Open framework material 1 is built from the face-directed assembly of a highly anionic {P8W48O184}40− molecular building unit, which incorporates a 1-nm pore, combined with electrophilic manganese linkers, which are redox-switchable.
Figure 2: Face-directed assembly of six {P8W48O184}40− heteropolyanions through multiple {Mn–O–W} bonds along all axes, giving rise to a geometrically well-defined Archimedean solid: the truncated cuboctahedron.
Figure 3: UV spectrophotometric exchange experiments were used to establish the cation exchange capabilities of the solvent-accessible voids of 1 over a 24-h period.

Similar content being viewed by others

References

  1. Takeda, N., Umemoto, K., Tamaguchi, K. & Fujita, M. A nanometre-sized hexahedral coordination capsule assembled from 24 components. Nature 398, 794–796 (1999).

    Article  CAS  Google Scholar 

  2. Pluth, M. D., Bergman, R. G. & Raymond, K. N. Acid catalysis in basic solution: a supramolecular host promotes orthoformate hydrolysis. Science 316, 85–88 (2007).

    Article  CAS  Google Scholar 

  3. Ziv, A. et al. Flexible pores of a metal oxide-based capsule permit entry of comparatively larger organic guests. J. Am. Chem. Soc. 131, 6380–6382 (2009).

    Article  CAS  Google Scholar 

  4. Mal, P., Breiner, B., Rissanen, K. & Nitschke, J. R. White phosphorus is air-stable within a self-assembled tetrahedral capsule. Science 324, 1697–1699 (2009).

    Article  CAS  Google Scholar 

  5. Dinolfo, P. H. & Hupp, J. T. Supramolecular coordination chemistry and functional microporous molecular materials. Chem. Mater. 13, 3113–3125 (2001).

    Article  CAS  Google Scholar 

  6. Sato, S. et al. Fluorous nanodroplets structurally confined in an organopalladium sphere. Science 313, 1273–1276 (2006).

    Article  CAS  Google Scholar 

  7. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  8. Olenyuk, B., Whiteford, J. A., Fechtenkötter, A. & Stang, P. J. Self-assembly of nanoscale cuboctahedra by coordination chemistry. Nature 398, 796–799 (1999).

    Article  CAS  Google Scholar 

  9. Li, Q. et al. Docking in metal-organic frameworks. Science 325, 855–859 (2009).

    Article  CAS  Google Scholar 

  10. Rowsell, J. & Yaghi, O. M. Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 73, 3–14 (2004).

    Article  CAS  Google Scholar 

  11. Perry, J. J., Perman, P. A. & Zaworotko, M. J. Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 38, 1400–1417 (2009).

    Article  CAS  Google Scholar 

  12. Kitagawa, S., Kitaura, R. & Noro, S.-I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  13. Tao, Y., Kanoh, H., Abrams, L. & Kaneko, K. Mesopore-modified zeolites: preparation, characterization and applications. Chem. Rev. 106, 896–910 (2006).

    Article  CAS  Google Scholar 

  14. Long, D.-L., Burkholder, E. & Cronin, L. Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem. Soc. Rev. 36, 105–121 (2007).

    Article  CAS  Google Scholar 

  15. Müller, A. et al. Artificial cells: temperature-dependent, reversible Li+-ion uptake/release equilibrium at metal oxide nanocontainer pores. Angew. Chem. Int. Ed. 43, 4466–4470 (2004).

    Article  Google Scholar 

  16. Geletii, Y. V. et al. An all-inorganic, stable and highly active tetraruthenium homogeneous catalyst for water oxidation. Angew. Chem. Int. Ed. 47, 3896–3899 (2008).

    Article  CAS  Google Scholar 

  17. Dolbecq, A. et al. Hybrid 2D and 3D frameworks based on ε-Keggin polyoxometalates: experimental and simulation. Eur. J. Inorg. Chem. 3009–3018 (2005).

  18. Rodriguez-Albelo, L. M. et al. Zeolitic polyoxometalate-based metal–organic frameworks (Z-POMOFs): computational evaluation of hypothetical polymorphs and the successful targeted synthesis of the redox-active Z-POMOF1. J. Am. Chem. Soc. 131, 16078–16087 (2009).

    Article  Google Scholar 

  19. Müller, A., Shah, S. Q. N., Bögge, H. & Schmidtmann, M. Molecular growth from a Mo176 to a Mo248 cluster. Nature 397, 47–50 (1999).

    Article  Google Scholar 

  20. Schemberg, J. et al. Towards biological supramolecular chemistry: a variety of pocket-templated, individual metal oxide cluster nucleations in the cavity of a Mo/W-storage protein. Angew. Chem. Int. Ed. 46, 2408–2413 (2007).

    Article  CAS  Google Scholar 

  21. AlDamen, M. A. et al. Mononuclear lanthanide single-molecule magnets based on polyoxometalates. J. Am. Chem. Soc. 130, 8874–8875 (2008).

    Article  CAS  Google Scholar 

  22. Pope, M. T. & Müller, A. Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications (Kluwer, 2001).

    Google Scholar 

  23. Pradeep, C. P., Long, D.-L., Kögerler, P & Cronin, L. Controlled assembly and solution observation of a 2.6 nm polyoxometalate ‘super’ tetrahedron cluster: [KFe12(OH)18(α-1,2,3-P2W15O56)4]29−. Chem. Commun. 4254–4256 (2007).

  24. Ritchie, C. et al. Reversible redox reactions in an extended polyoxometalate framework solid. Angew. Chem. Int. Ed. 47, 6881–6884 (2008).

    Article  CAS  Google Scholar 

  25. Uchida, S., Hashimoto, M. & Mizuno, N. A breathing ionic crystal displaying selective binding of small alcohols and nitriles: K3[Cr3O(OOCH)6(H2O)3][α-SiW12O40]·16H2O. Angew. Chem. Int. Ed. 42, 2814–2817 (2002).

    Article  Google Scholar 

  26. Van Bekkum, H., Flanigen, E. M., Jacobs, P. A. & Jansen, J. C. (eds) Introduction to Zeolite Science and Practice (Elsevier, 2001).

    Google Scholar 

  27. van Bekkum, H. & Cejka, J. Zeolites and ordered mesoporous materials: progress and prospects, in Studies in Surface Science Vol. 157 (Elsevier, 2005).

    Google Scholar 

  28. Contant, R. & Teze, A. A new crown heteropolyanion, K28Li5H7P8W48O184·92H2O: synthesis, structure and properties. Inorg. Chem. 24, 4610–4614 (1985).

    Article  CAS  Google Scholar 

  29. Müller, A. et al. Metal-oxide-based nucleation process under confined conditions: two mixed-valence V6-type aggregates closing the W48 wheel-type cluster cavities. Angew Chem. Int. Ed. 46, 4477–4480 (2007).

    Article  Google Scholar 

  30. Mal, S. & Kortz, U. The wheel-shaped Cu20-tungstophosphate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25− ion. Angew. Chem. Int. Ed. 44, 3777–3870 (2005).

    Article  CAS  Google Scholar 

  31. Sheldrick, G. M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr. A 46, 467–473 (1990).

    Article  Google Scholar 

  32. Sheldrick, G. M. A short history of SHELX. Acta Cryst. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  33. Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Cryst. 32, 837–838 (1999).

    Article  CAS  Google Scholar 

  34. Clark, R. C. & Reid, J. S. The analytical calculation of absorption in multifaceted crystals. Acta Cryst. A 51, 887–897 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the EPSRC, BP Chemicals, WestCHEM, The Leverhulme Trust and The University of Glasgow. The authors would like to thank M. Beglan for assistance with FP and FAAS analysis and A. Macdonell for the concept movie showing the assembly of the cubic array.

Author information

Authors and Affiliations

Authors

Contributions

S.M. and L.C. designed experiments, analysed data, prepared the figures and wrote the manuscript. C.S. provided invaluable advice and assisted with the PXRD. H.M. performed electrochemistry measurements. D.L. checked the crystallography. T.B. verified the synthesis.

Corresponding author

Correspondence to Leroy Cronin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2365 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, S., Streb, C., Miras, H. et al. Face-directed self-assembly of an electronically active Archimedean polyoxometalate architecture. Nature Chem 2, 308–312 (2010). https://doi.org/10.1038/nchem.581

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.581

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing