Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Binding energies, lifetimes and implications of bulk and interface solvated electrons in water

Abstract

Solvated electrons in liquid water are one of the seemingly simplest, but most important, transients in chemistry and biology, but they have resisted disclosing important information about their energetics, binding motifs and dynamics. Here we report the first ultrafast liquid-jet photoelectron spectroscopy measurements of solvated electrons in liquid water. The results prove unequivocally the existence of solvated electrons bound at the water surface and of solvated electrons in the bulk solution, with vertical binding energies of 1.6 eV and 3.3 eV, respectively, and with lifetimes longer than 100 ps. The unexpectedly long lifetime of solvated electrons bound at the water surface is attributed to a free-energy barrier that separates surface and interior states. Beyond constituting important energetic and kinetic benchmark and reference data, the results also help to understand the mechanisms of a number of very efficient electron-transfer processes in nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the experimental setup and strategy to measure liquid-state photoelectron spectra.
Figure 2: Photoelectron spectra of surface- and bulk-solvated electrons.
Figure 3: Comparison of experimental binding energies.
Figure 4: Explanation for the long lifetimes of the surface-bound electrons.
Figure 5: The concept of resonant dissociative electron attachment.

Similar content being viewed by others

References

  1. Boag, J. W. & Hart, E. J. Absorption spectra in irradiated water and some solutions – absorption spectra of hydrated electrons. Nature 197, 45–47 (1963).

    Article  CAS  Google Scholar 

  2. Baletto, F., Cavazzoni, C. & Scandolo, S. Surface trapped excess electrons on ice. Phys. Rev. Lett. 95, 176801 (2005).

    Article  Google Scholar 

  3. Boudaiffa, B. et al. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287, 1658–1660 (2000).

    Article  CAS  Google Scholar 

  4. Duncan Lyngdoh, R. H. & Schaefer, H. F. Elementary lesions in DNA subunits: electron, hydrogen atom, proton, and hydride transfers. Acc. Chem. Res. 42, 563–572 (2009).

    Article  Google Scholar 

  5. Gu, J., Xie, Y. & Schaefer, H. F. Electron attachment to nucleotides in aqueous solution. Chem. Phys. Chem. 7, 1885–1887 (2006).

    Article  CAS  Google Scholar 

  6. Lin, J. P., Balabin, I. A. & Beratan, D. N. The nature of aqueous tunneling pathways between electron-transfer proteins. Science 310, 1311–1313 (2005).

    Article  CAS  Google Scholar 

  7. Lu, Q.-B. & Sanche, L. Effects of cosmic rays on atmospheric chlorofluorocarbon dissociation and ozone depletion. Phys. Rev. Lett. 87, 078501 (2001).

    Article  CAS  Google Scholar 

  8. Sanche, L. Beyond radical thinking. Nature 461, 358–359 (2009).

    Article  CAS  Google Scholar 

  9. Wang, C.-R. et al. Resonant dissociative electron transfer of the presolvated electron to CCl4 in liquid: direct observation and lifetime of the CCl4* transition state. J. Chem. Phys. 128, 041102 (2008).

    Article  Google Scholar 

  10. Wang, C.-R., Nguyen, J. & Lu, Q.-B. Bond breaks of nucleotides by dissociative electron transfer of nonequilibrium prehydrated electrons: a new molecular mechanism for reductive DNA damage. J. Am. Chem. Soc. 131, 11320–11322 (2009).

    Article  CAS  Google Scholar 

  11. Simons, J. How do low-energy (0.1–2 eV) electrons cause DNA-strand breaks? Acc. Chem. Res. 39, 772–779 (2006).

    Article  CAS  Google Scholar 

  12. Buxon, G. V., Greenstock, C. L., Helman, W. P. & Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886 (1988).

    Article  Google Scholar 

  13. Faubel, M. & Kisters, T. Non-equilibrium molecular evaporation of carboxylic-acid dimers. Nature 339, 527–529 (1989).

    Article  CAS  Google Scholar 

  14. Faubel, M., Schlemmer, S. & Toennies, J. P. A molecular-beam study of the evaporation of water from a liquid jet. Z. Phys. D 10, 269–277 (1988).

    Article  CAS  Google Scholar 

  15. Aziz, E. F. et al. Interaction between liquid water and hydroxide revealed by core--hole de-excitation. Nature 455, 89–91 (2008).

    Article  CAS  Google Scholar 

  16. Winter, B. & Faubel, M. Photoemission from liquid aqueous solutions. Chem. Rev. 106, 1176–1211 (2006).

    Article  CAS  Google Scholar 

  17. Link, O. et al. Ultrafast phase transition in metastable water near liquid interfaces. Faraday Discuss. 141, 67–79 (2009).

    Article  CAS  Google Scholar 

  18. Link, O. et al. Ultrafast electronic spectroscopy for chemical analysis near liquid water interfaces: concepts and applications. Appl. Phys. A 96, 117–135 (2009).

    Article  CAS  Google Scholar 

  19. Barnett, R. N., Landmann, U., Cleveland, C. L. & Jortner, J. Electron localization in water clusters. II. Surface and internal states. J. Chem. Phys. 88, 4429–4447 (1988).

    Article  CAS  Google Scholar 

  20. Frigato, T. et al. Ab initio molecular dynamics simulation of a medium-sized water cluster anion: from an interior to a surface-located excess electron via a delocalized state. J. Phys. Chem. A 112, 6125–6133 (2008).

    Article  CAS  Google Scholar 

  21. Herbert, J. M. & Head-Gordon, M. First-principles, quantum-mechanical simulations of electron solvation by water clusters. Proc. Natl Acad. Sci. USA 103, 14282–14287 (2006).

    Article  CAS  Google Scholar 

  22. Lee, H. M., Suh, S. B. & Kim, K. S. Water heptamer with an excess electron: ab initio study. J. Chem. Phys. 118, 9981–9986 (2003).

    Article  CAS  Google Scholar 

  23. Madarasz, A., Rossky, P. J. & Turi, L. Interior- and surface-bound excess electron states in large water cluster anions. J. Chem. Phys. 130, 124319 (2009).

    Article  Google Scholar 

  24. Sommerfeld, T. & Jordan, K. D. Electron binding motifs of (H2O)n clusters. J. Am. Chem. Soc. 128, 5828–5833 (2006).

    Article  CAS  Google Scholar 

  25. Turi, L. & Borgis, D. Analytic investigations of an electron-water molecule pseudo potential. II. Development of a new pair potential and molecular dynamics simulations. J. Chem. Phys. 117, 6186–6195 (2002).

    Article  CAS  Google Scholar 

  26. Turi, L., Sheu, W. S. & Rossky, P. J. Characterization of excess electrons in water-cluster anions by quantum simulations. Science 309, 914–917 (2005).

    Article  CAS  Google Scholar 

  27. Ayotte, P. & Johnson, M. A. Electronic absorption spectra of size-selected hydrated electron clusters: (H2O)n, n = 6–50. J. Chem. Phys. 106, 811–814 (1997).

    Article  CAS  Google Scholar 

  28. Kim, J., Becker, I., Cheshnovsky, O. & Johnson, M. A. Photoelectron spectroscopy of the ‘missing’ hydrated electron clusters (H2O)n, n = 3, 5, 8 and 9: isomers and continuity with the dominant clusters n = 6, 7 and ≥11. Chem. Phys. Lett. 297, 90–96 (1998).

    Article  CAS  Google Scholar 

  29. Coe, J. V., Williams, S. M. & Bowen, K. H. Photoelectron spectra of hydrated electron clusters vs. cluster size: connecting to bulk. Int. Rev. Phys. Chem. 27, 27–51 (2008).

    Article  CAS  Google Scholar 

  30. Kammrath, A., Verlet, J. R. R., Griffin, G. B. & Neumark, D. M. Photoelectron spectroscopy of large (water)n (n = 50–200) clusters at 4.7 eV. J. Chem. Phys. 125, 076101 (2006).

    Article  Google Scholar 

  31. Hammer, N. I. et al. Vibrational predissociation spectroscopy of the (H2O)6–21 clusters in the OH stretching region: evolution of the excess electron-binding signature into the intermediate cluster regime. J. Chem. Phys. 123, 244311 (2005).

    Article  Google Scholar 

  32. Verlet, J. R. R. et al. Observation of large water-cluster anions with surface-bound excess electrons. Science 307, 93–96 (2005).

    Article  CAS  Google Scholar 

  33. Bragg, A. E. et al. Hydrated electron dynamics: from clusters to bulk. Science 306, 669–671 (2004).

    Article  CAS  Google Scholar 

  34. Paik, D. H. et al. Electrons in finite-sized water cavities: hydration dynamics observed in real time. Science 306, 672–675 (2004).

    Article  CAS  Google Scholar 

  35. Neumark, D. M. Spectroscopy and dynamics of excess electrons in clusters. Mol. Phys. 106, 2183–2197 (2008).

    Article  CAS  Google Scholar 

  36. Ma, L., Mayer, K., Chirot, F. & von Issendorf, B. Low temperature photoelectron spectra of water cluster anions. J. Chem. Phys. 131, 144303 (2009).

    Article  Google Scholar 

  37. Elles, C. G., Jailaubekov, A. E., Crowell, R. A. & Bradforth, S. E. Excitation-energy dependence of the mechanism for two-photon ionization of liquid H2O and D2O from 8.3 to 12.4 eV. J. Chem. Phys. 125, 044515 (2006).

    Article  Google Scholar 

  38. Laenen, R., Roth, T. & Laubereau, A. Novel precursors of solvated electrons in water: evidence for a charge transfer process. Phys. Rev. Lett. 85, 50–53 (2000).

    Article  CAS  Google Scholar 

  39. Ottosson, N. et al. Photoemission spectroscopy of liquid water and aqueous solution: electron effective attenuation lengths and emission-angle anisotropy. J. Electron Spectrosc. Relat. Phenom. doi:10.1016/j.elspec.2009.08.007 (2009).

  40. Lenchenkov, V., Kloepfer, J., Vilchiz, V. & Bradforth, S. E. Electron photodetachment from [Fe(CN)6]4−: photoelectron relaxation and geminate recombination. Chem. Phys. Lett. 342, 277–286 (2001).

    Article  CAS  Google Scholar 

  41. Petersen, P. B. & Saykally, R. J. Adsorption of ions to the surface of dilute electrolyte solutions: the Jones–Ray effect revisited. J. Am. Chem. Soc. 127, 15446–15452 (2005).

    Article  CAS  Google Scholar 

  42. Madarasz, A., Rossky, P. J. & Turi, L. Excess electron relaxation dynamics at water/air interfaces. J. Chem. Phys. 126, 234707 (2007).

    Article  Google Scholar 

  43. Yokoyama, K. et al. Detailed investigation of the femtosecond pump–probe spectroscopy of the hydrated electron. J. Phys. Chem. A 102, 6957–6966 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Discussions with D. Neumark and P. Jungwirth are acknowledged. This work was supported by the Deutsche Forschungsgemeinschaft within the programmes SPP1134, GK 782 and SFB 755, the CRC (Nano-Spectroscopy and X-Ray Imaging) in Göttingen and the University of Leipzig.

Author information

Authors and Affiliations

Authors

Contributions

B.A., M.F. and B.W. designed the experiments. K.R.S., Y.L., E.L. and O.L. performed the experiments. K.R.S. and Y.L. analysed the data. K.R.S., Y.L., O.L. and E.L. contributed materials and/or analysis tools. B.A., B.W. and U.B. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Bernd Abel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siefermann, K., Liu, Y., Lugovoy, E. et al. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nature Chem 2, 274–279 (2010). https://doi.org/10.1038/nchem.580

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.580

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing