Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stereoinduction by distortional asymmetry

Abstract

Stereoselective chemical synthesis requires the two faces of a π bond to be differentiated. Theoretically sound qualitative models for understanding stereoinduction seem to break down in sterically unbiased cyclic systems. Presented here as the distortional asymmetry model is new insight that identifies circumstances where distortional ground state contributions are highly asymmetric and thereby contribute significantly to face selectivity. Out-of-plane distortional potential calculations, transition state calculations and molecular orbital analysis agree with experimental data that cannot otherwise be attributed to steric, torsion, polar or emergent transition state stabilizing effects. The model is readily understood in terms of reaction theory. The explanatory power of the model is also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epoxidation of sterically unbiased olefins.
Figure 2: Distortional asymmetry profile.
Figure 3: Origin and consequences of asymmetric distortional contributions to face selectivity.
Figure 4: Asymmetric bonding interactions. Ring strain perturbs the π bond and gives rise to increased orbital interactions.

Similar content being viewed by others

References

  1. Chem. Rev. 99(5), 1067–1480 (1999).

  2. Dannenberg, J. J. Using perturbation and frontier molecular orbital theory to predict diastereofacial selectivity. Chem. Rev. 99, 1225–1242 (1999).

    Article  CAS  Google Scholar 

  3. Tomoda, S. The exterior frontier orbital extension model. Chem. Rev. 99, 1243–1264 (1999).

    Article  CAS  Google Scholar 

  4. Cieplak, A. S. Inductive and resonance effects of substituents on π-face selection. Chem. Rev. 99, 1265–1336 (1999).

    Article  CAS  Google Scholar 

  5. Ohwada, T. Orbital-controlled stereoselection in sterically unbiased cyclic systems. Chem. Rev. 99, 1337–1376 (1999).

    Article  CAS  Google Scholar 

  6. Gung, B. W. Structure distortions in heteroatom-substituted cyclohexanones, adamantanones, and adamantanes: origin of diastereofacial selectivity. Chem. Rev. 99, 1377–1386 (1999).

    Article  CAS  Google Scholar 

  7. Kaselji, M., Chung, W. S. & le Noble, W. J. Face selection in addition and elimination in sterically unbiased systems. Chem. Rev. 99, 1387–1414 (1999).

    Article  Google Scholar 

  8. Adcock, W. & Trout, N. A. Nature of the electronic factor governing diastereofacial selectivity in some reactions of rigid saturated model substrates. Chem. Rev. 99, 1415–1436 (1999).

    Article  CAS  Google Scholar 

  9. Mehta, G. & Chandrasekar, J. Electronic control of facial selection in additions to sterically unbiased ketones and olefins. Chem. Rev. 99, 1437–1468 (1999).

    Article  CAS  Google Scholar 

  10. Wipf, P. & Jung, J.-K. Nucleophilic additions to 4,4-disubstituted 2,5-cyclohexadienones: can dipole effects control facial selectivity? Chem. Rev. 99, 1469–1480 (1999).

    Article  CAS  Google Scholar 

  11. Polanyi, J. C. Concepts in reaction dynamics. Acc. Chem. Res. 5, 161–168 (1972).

    Article  CAS  Google Scholar 

  12. Zare, R. N. Laser control of chemical reactions. Science 279, 1875–1879 (1998).

    Article  CAS  Google Scholar 

  13. Xidos, J. D., Poirier, R. A., Pye, C. C. & Burnell, D. J. An ab initio study of facial selectivity in the Diels-Alder reaction. J. Org. Chem. 63, 105–112 (1998).

    Article  CAS  Google Scholar 

  14. Barnes, G. L. & Hase, W. L. Transition state analysis: Bent out of shape. Nature Chem. 1, 103–104 10.1038/nchem.193(2009).

    Article  CAS  Google Scholar 

  15. Xu, L., Doubleday, C. E. & Houk, K. N. Dynamics of 1,3-dipolar cycloaddition reactions of diazonium betaines to acetylene and ethylene: bending vibrations facilitate reaction. Angew. Chem. Int. Ed. 48, 2746–2748 (2009).

    Article  CAS  Google Scholar 

  16. Ess, D. H. & Houk, K. N. Distortion/interaction energy control of 1,3-dipolar cycloaddition reactivity. J. Am. Chem. Soc. 129, 10646–10647 (2007).

    Article  CAS  Google Scholar 

  17. Wipff, G. & Morokuma, K. Nonplanarity of π systems. An ab initio study of norbornene and norbornadiene. Tetrahedron Lett. 21, 4445–4448 (1980).

    Article  CAS  Google Scholar 

  18. Laube, T. & Hollenstein, S. Crystal structures of two activated cylcohexanones with opposite pyramidalizations of the carbonyl groups. J. Am. Chem. Soc. 114, 8812–8817 (1992).

    Article  CAS  Google Scholar 

  19. Holthausen, M. C. & Koch, W. Double-bond geometry in norbornene, sesquinorbornenes, and related compounds. a high-level quantum chemical investigation. J. Phys. Chem. 97, 10021–10027 (1993).

    Article  CAS  Google Scholar 

  20. Tsuji, M., Ohwada, T. & Shudo, K. A cyclopropyl group shows reverse facial selectivity depending on the bicyclic ring system. Tetrahedron Lett. 38, 6693–6696 (1997).

    Article  CAS  Google Scholar 

  21. Winstein, S., Shatavsky, M., Norton, C. & Woodward, R. B. 7-Norbornenyl and 7-norbornyl cations. J. Am. Chem. Soc. 77, 4183–4184 (1955).

    Article  CAS  Google Scholar 

  22. Frisch, M. J. et al. Gaussian 03, Revision C. 02 (Gaussian, 2004).

  23. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  24. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  25. Houk, K. N. et al. Theory and modeling of stereoselective organic reactions. Science 231, 1108–1117 (1986).

    Article  CAS  Google Scholar 

  26. Zheng, J., Zhoa, Y. & Truhlar, D. G. Representative benchmarck suites for barrier heights of diverse reaction types and assessment of electronic structure methods for thermochemical kinetics. J. Chem. Theory Comput. 3, 569–582 (2007).

    Article  CAS  Google Scholar 

  27. Singleton, D. A., Merrigan, S. R., Liu, J. & Houk, K. N. Experimental geometry of the epoxidation transition state. J. Am. Chem. Soc. 119, 3385–3386 (1997).

    Article  CAS  Google Scholar 

  28. Grote, R. F. & Hynes, J. T. The stable states picture of chemical reactions. II. Rate constants for condensed and gas phase reaction models. J. Chem. Phys. 73, 2715–2732 (1980).

    Article  CAS  Google Scholar 

  29. Marcus, R. Transfer reactions in chemistry. Theory and experiment. Pure Appl. Chem. 69, 13–29 (1997).

    Article  CAS  Google Scholar 

  30. Vázquez, S. & Camps, P. Chemistry of pyramidalized alkenes. Tetrahedron 61, 5147–5208 (2005).

    Article  Google Scholar 

  31. Seebach, D., Zimmerman, J., Gysel, U., Ziegler, R. & Ha, T. K. Totally stereoselective additions to 2,6-disubstituted 1,3-dioxin-4-ones (chiral acetoacetic acid derivatives). Synthetic and mechanistic aspects of remote stereoselectivity. J. Am. Chem. Soc. 110, 4763–4772 (1988).

    Article  CAS  Google Scholar 

  32. Cee, V. J., Cramer, C. J. & Evans, D. A. Theoretical investigation of enolborane addition to α-heteroatom-substituted aldehydes. Relevance of the Cornforth and polar Felkin-Anh models for asymmetric induction. J. Am. Chem. Soc. 128, 2920–2930 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from Merck is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

L.J.W. and R.V.K. designed experiments and analysed data, R.V.K. performed experiments, and L.J.W. wrote the paper.

Corresponding author

Correspondence to Lawrence J. Williams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1692 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolakowski, R., Williams, L. Stereoinduction by distortional asymmetry. Nature Chem 2, 303–307 (2010). https://doi.org/10.1038/nchem.577

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.577

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing