Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Selective incarceration of caesium ions by Venus flytrap action of a flexible framework sulfide

Abstract

The selective capture of Cs+ from solution is relevant to the remediation of nuclear waste and remains a significant challenge. Here we describe a new framework composed of [(CH3)2NH2]+ and [Ga2Sb2S7]2− layers, which are perforated with holes. Shape selectivity couples with framework flexibility, allowing the compound to respond to the ion-exchange process. The size, shape and flexibility of the holes allow Cs+ ions in an aqueous solution to selectively pass through and enter the material via an ion-exchange process. Following capture, the structure dynamically closes its holes in a manner reminiscent of a Venus flytrap, which prevents the Cs+ ions from leaching out. This process has useful implications in the separation science of Cs as it relates to the clean-up of nuclear waste. The dynamic response we describe here provides important insights for designing new materials for the selective removal of difficult-to-capture ions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structure of [(CH3)2NH2]2Ga2Sb2S7·H2O (I).
Figure 2: X-ray diffraction of ion-exchanged compound I.
Figure 3: The unit cell of Cs2Ga2Sb2S7 (II) obtained by complete ion exchange of the original dimethylammonium cations in I.
Figure 4: The comparison of the relative cation sites in between the layers of compounds I and II.

References

  1. 1

    Li, H., Laine, A. & O'Keeffe, M. Supertetrahedral sulfide crystals with giant cavities and channels. Science 283, 1145–1147 (1999).

    CAS  Article  Google Scholar 

  2. 2

    MacLachlan, M. J., Coombs, N. & Ozin, G. A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulfides from Ge4S104− clusters. Nature 397, 681–684 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Bag, S., Trikalitis, P. N., Chupas, P. J. & Kanatzidis, M. G. Porous semiconducting gels and aerogels from chalcogenide clusters. Science 317, 490–493 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Zheng, N., Bu, X. & Feng, P. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity. Nature 426, 428–432 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Zheng, N., Bu, X. & Feng, P. Pentasupertetrahedral clusters as building blocks for a three-dimensional sulfide superlattice. Angew. Chem. Int. Ed. Engl. 43, 4753–4755 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Manos, M. J., Iyer, R. G., Quarez, E., Liao, J. H. & Kanatzidis, M. G. {Sn[Zn4Sn4S17]}6−: A robust open framework based on metal-linked penta-supertetrahedral [Zn4Sn4S17]10− clusters with ion-exchange properties. Angew. Chem. 44, 3552–3555 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Spetzler, V., Riujberk, H., Näther, C. & Bensch, W. Novel copper(i)-thioantimonates(iii): solvothermal synthesis, crystal structures, thermal stability and magnetic properties of (C2N2H10)0.5Cu2SbS3, (C3N2H12)0.5Cu2SbS3 and (C4N2H14)0.5Cu2SbS3 . Z. Anorg. Allg. Chem. 630, 142–148 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Hanko J. A. & Kanatzidis M. G. A three-dimensional framework with accessible nanopores: RbCuSb2Se4·H2O. Angew. Chem. Int. Ed. 37, 342–344 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Parise, J. B. An antimony sulfide with a 2-dimensional, intersecting system of channels. Science 251, 293–294 (1991).

    CAS  Article  Google Scholar 

  10. 10

    Vaqueiro, P., Chippindale, A. M., Cowley, A. R. & Powell, A. V. Templated synthesis of the novel layered silver − antimony sulfides [H3NCH2CH2NH2][Ag2SbS3] and [H3NCH2CH2NH2]2[Ag5Sb3S8]. Inorg. Chem. 42, 7846–7851 (2003).

    CAS  Article  Google Scholar 

  11. 11

    van den Berg, A. W. C., Bromley, S. T., Ramsahye, N. & Maschmeyer, T. Diffusion of molecular hydrogen through porous materials: the importance of framework flexibility. J. Phys. Chem. B 108, 5088–5094 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Fletcher, A. J., Thomas, K. M. & Rosseinsky, M. J. Flexibility in metal-organic framework materials: Impact on sorption properties. J. Solid State Chem. 178, 2491–2510 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Trikalitis, P. N., Ding, N., Malliakas, C., Billinge, S. J. L. & Kanatzidis, M. G. Mesostructured selenides with cubic MCM-48 type symmetry: Large framework elasticity and uncommon resiliency to strong acids. J. Am. Chem. Soc. 126, 15326–15327 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Manos, M. J., Chrissafis K. & Kanatzidis M. G. Unique pore selectivity for Cs+ and exceptionally high NH4+ exchange capacity of the chalcogenide material K6Sn[Zn4Sn4S17]. J. Am. Chem. Soc. 128, 8875–8883 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Venkatesan K. A., Sukumaran V., Antony M. P. & Srinivasan, T. G. Studies on the feasibility of using crystalline silicotitanates for the separation of cesium-137 from fast reactor high-level liquid waste. J. Rad. Nucl. Chem. 280, 129–136, (2009).

    CAS  Article  Google Scholar 

  16. 16

    Bortun, A. I., Bortun, L. N., Poojary, D. M., Xiang, O. & Clearfield, A. Synthesis, characterization, and ion exchange behavior of a framework potassium titanium trisilicate K2TiSi3O9·H2O and its protonated phases. Chem. Mater. 12, 294–305 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Gu, B. et al. The effect of H+ irradiation on the Cs-ion exchange capacity of zeolite-NaY. J. Mater. Chem. 10, 2610–2616 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Möller, T. et al. Uptake of 85Sr, 134Cs and 57Co by antimony silicates doped with Ti4+, Nb5+, Mo6+ and W6+. J. Mater. Chem. 11, 1526–1532 (2001).

    Article  Google Scholar 

  19. 19

    Celestian, A. & Clearfield, A. The origin of ion-exchange selectivity in a porous framework titanium silicate. J. Mater. Chem. 17, 4839–4842 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Korzenski, M. B. & Kolis, J. W. Structural, magnetic, and ion-exchange properties of a new layered alkaline/alkaline earth iron phosphate: NaBaFe4(HPO4)3(PO4)3·H2O. Inorg. Chem. 39, 5663–5668 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Ok, K. M., Baek, J., Halasyamani, P. S. & O'Hare, D. New layered uranium phosphate fluorides: syntheses, structures, characterizations, and ion-exchange properties of A(UO2)F(HPO4)·xH2O (A = Cs+, Rb+, K+; x = 0 − 1). Inorg. Chem. 45, 10207–10214 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Manos, M. J., Ding, N. & Kanatzidis, M. G. Layered metal sulfides: exceptionally selective agents for radioactive strontium removal Proc. Natl Acad. Sci. USA 105, 3696–3699 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Manos, M. J. & Kanatzidis, M. G. Highly efficient and rapid Cs+ uptake by the layered metal sulfide K2xMnxSn3−xS6 (KMS-1). J. Am. Chem. Soc. 131, 6599–6607 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Gash, A. E. et al. Efficient recovery of elemental mercury from Hg(ii)-contaminated aqueous media using a redox-recyclable ion-exchange material. Environ. Sci. Technol. 32, 1007–1012 (1998).

    CAS  Article  Google Scholar 

  25. 25

    Behrens, E. A., Sylvester, P. & Clearfield, A. Assessment of a sodium nonatitanate and pharmacosiderite-type ion exchangers for strontium and cesium removal from DOE waste stimulants. Environ. Sci. Technol. 32, 101–107 (1998).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Science Foundation (DMR-0801855). This work made use of the ICP-OES (supported by National Science Foundation) at the Integrated Molecular Structure Education and Research Center (IMSERC) at Northwestern University. 

Author information

Affiliations

Authors

Contributions

N.D. and M.G.K. conceived and designed the experiments, N.D. performed the experiments, N.D. and M.G.K. analysed the data and co-wrote the paper.

Corresponding author

Correspondence to Mercouri G. Kanatzidis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 296 kb)

Supplementary information

Crystallographic data for compound I (CIF 11 kb)

Supplementary information

Crystallographic data for compound II (CIF 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ding, N., Kanatzidis, M. Selective incarceration of caesium ions by Venus flytrap action of a flexible framework sulfide. Nature Chem 2, 187–191 (2010). https://doi.org/10.1038/nchem.519

Download citation

Further reading

Search

Quick links