Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tailoring molecular layers at metal surfaces

Abstract

The design of networks of organic molecules at metal surfaces, highly attractive for a variety of applications ranging from molecular electronics to gas sensors to protective coatings, has matured to a degree that patterns with multinanometre unit cells and almost any arbitrary geometry can be fabricated. This Review provides an overview of vacuum-deposited organic networks at metal surfaces, using intermolecular hydrogen bonding, metal–atom coordination and in situ polymerization. Recent progress in these areas highlights how the design of surface patterns can benefit from the wealth of information available from solution- and bulk-phase chemistry, while at the same time providing novel insights into the nature of such bonds through the applicability of direct scanning probe imaging at metal surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of intermolecular interactions at metal surfaces.
Figure 2: Schematic representation of intermolecular interactions at surfaces.
Figure 3: A disordered 'glassy' set of terphenyltetracarboxylic acid molecules on graphite.
Figure 4: A hydrogen-bonded network at a Ag/Si(111) surface.
Figure 5: Hydrogen-bonded networks based on weak intermolecular interactions.
Figure 6: Networks formed by metal–ligand interactions.
Figure 8: Porous molecular networks serving as templates.
Figure 7: Covalently bonded structures at surfaces.

Similar content being viewed by others

References

  1. Lindsay, S. M. & Ratner, M. A. Molecular transport junctions: Clearing mists. Adv. Mater. 19, 23–31 (2007).

    Article  CAS  Google Scholar 

  2. Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007).

    CAS  PubMed  Google Scholar 

  3. Liu, Z., Yasseri, A., Lindsey, J. & Bocian, D. Molecular memories that survive silicon device processing and real-world operation. Science 302, 1543–1545 (2003).

    CAS  PubMed  Google Scholar 

  4. Bohrer, F. I. et al. Comparative gas sensing in cobalt, nickel, copper, zinc, and metal-free phthalocyanine chemiresistors. J. Am. Chem. Soc. 131, 478–485 (2009).

    CAS  PubMed  Google Scholar 

  5. Cody, I. A. et al. Low energy surfaces for reduced corrosion and fouling. US patent 0219598 A1 (2005).

  6. Bhushan, B. Nanotribology and nanomechanics in nano/biotechnology. Phil. Trans. R. Soc. A 366, 1499–1537 (2008).

    CAS  PubMed  Google Scholar 

  7. Kind, M. & Woll, C. Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Prog. Surf. Sci. 84, 230–278 (2009).

    CAS  Google Scholar 

  8. Lauhon, L. & Ho, W. Single-molecule chemistry and vibrational spectroscopy: Pyridine and benzene on Cu(001). J. Phys. Chem. A 104, 2463–2467 (2000).

    CAS  Google Scholar 

  9. Lukas, S., Witte, G. & Woll, C. Novel mechanism for molecular self-assembly on metal substrates: Unidirectional rows of pentacene on Cu(110) produced by a substrate-mediated repulsion. Phys. Rev. Lett. 88, 028301 (2002).

    CAS  PubMed  Google Scholar 

  10. Wan, L. J. & Itaya, K. In situ scanning tunnelling microscopy of benzene, naphthalene, and anthracene adsorbed on Cu(111) in solution. Langmuir 13, 7173–7179 (1997).

    CAS  Google Scholar 

  11. Dougherty, D. B., Maksymovych, P., Lee, J. & Yates, J. T. Local spectroscopy of image-potential-derived states: From single molecules to monolayers of benzene on Cu(111). Phys. Rev. Lett. 97, 236806 (2006).

    CAS  PubMed  Google Scholar 

  12. Weiss, P. & Eigler, D. Site dependence of the apparent shape of a molecule in scanning tunneling microscopy images - benzene on Pt(111). Phys. Rev. Lett. 71, 3139–3142 (1993).

    CAS  PubMed  Google Scholar 

  13. Mate, C. M. & Somorjai, G. A. Carbon-monoxide induced ordering of benzene on Pt (111) and Rh (111) crystal-surfaces. Surf. Sci. 160, 542–560 (1985).

    CAS  Google Scholar 

  14. Han, P., Mantooth, B., Sykes, E., Donhauser, Z. & Weiss, P. Benzene on Au {111} at 4 K: Monolayer growth and tip-induced molecular cascades. J. Am. Chem. Soc. 126, 10787–10793 (2004).

    CAS  PubMed  Google Scholar 

  15. Mantooth, B. A. et al. Analyzing the motion of benzene on Au{111}: Single molecule statistics from scanning probe images. J. Phys. Chem. C 111, 6167–6182 (2007).

    CAS  Google Scholar 

  16. Chiang, S., Wilson, R. J., Mate, C. M. & Ohtani, H. Real space imaging of Co-adsorbed Co and benzene molecules on Rh(111). J. Microsc-Oxford 152, 567–571 (1988).

    CAS  Google Scholar 

  17. Hallmark, V. M., Chiang, S., Brown, J. K. & Woll, C. Real-space imaging of the molecular-organization of naphthalene on Pt(111). Phys. Rev. Lett. 66, 48–51 (1991).

    CAS  PubMed  Google Scholar 

  18. Sohnchen, S., Lukas, S. & Witte, G. Epitaxial growth of pentacene films on Cu(110). J. Chem. Phys. 121, 525–534 (2004).

    CAS  PubMed  Google Scholar 

  19. Xi, M., Yang, M. X., Jo, S. K., Bent, B. E. & Stevens, P. Benzene adsorption on Cu(111) - formation of a stable bilayer. J. Chem. Phys. 101, 9122–9131 (1994).

    CAS  Google Scholar 

  20. Lauhon, L. & Ho, W. Electronic and vibrational excitation of single molecules with a scanning tunneling microscope. Surf. Sci. 451, 219–225 (2000).

    CAS  Google Scholar 

  21. Hla, S., Bartels, L., Meyer, G. & Rieder, K. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000).

    CAS  PubMed  Google Scholar 

  22. McCarty, G. & Weiss, P. Footprints of a surface chemical reaction: Dissociative chemisorption of p-diiodobenzene on Cu{111}. J. Phys. Chem. B 106, 8005–8008 (2002).

    CAS  Google Scholar 

  23. Berland, K., Einstein, T. L. & Hyldgaard, P. Rings sliding on a honeycomb network: Adsorption contours, interactions, and assembly of benzene on Cu(111). Phys. Rev. B 80, 155431 (2009).

    Google Scholar 

  24. Sautet, P. & Bocquet, M. L. A theoretical-analysis of the site dependence of the shape of a molecule in STM images. Surf. Sci. 304, L445–L450 (1994).

    CAS  Google Scholar 

  25. Wong, K., Kwon, K., Rao, B., Liu, A. & Bartels, L. Effect of halo substitution on the geometry of arenethiol films on Cu(111). J. Am. Chem. Soc. 126, 7762–7763 (2004).

    CAS  PubMed  Google Scholar 

  26. Bohringer, M., Morgenstern, K., Schneider, W. & Berndt, R. Separation of a racemic mixture of two-dimensional molecular clusters by scanning tunneling microscopy. Angew. Chem. Int. Ed. 38, 821–823 (1999).

    CAS  Google Scholar 

  27. Morgenstern, K., Hla, S. & Rieder, K. Coexisting superstructures of iodobenzene on Cu(111) near saturation coverage. Surf. Sci. 523, 141–150 (2003).

    CAS  Google Scholar 

  28. Lee, A. F., Chang, Z. P., Hackett, S. F. J., Newman, A. D. & Wilson, K. Hydrodebromination of bromobenzene over Pt(111). J. Phys. Chem. C 111, 10455–10460 (2007).

    CAS  Google Scholar 

  29. Xu, B., Tao, C. G., Williams, E. D. & Reutt-Robey, J. E. Coverage dependent supramolecular structures: C60:ACA monolayers on Ag(111). J. Am. Chem. Soc. 128, 8493–8499 (2006).

    CAS  PubMed  Google Scholar 

  30. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    CAS  PubMed  Google Scholar 

  31. Repp, J., Meyer, G., Stojkovic, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: Scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

    PubMed  Google Scholar 

  32. Nilekar, A. U., Greeley, J. & Mavrikakis, M. A simple rule of thumb for diffusion on transition-metal surfaces. Angew. Chem. Int. Ed. 45, 7046–7049 (2006).

    CAS  Google Scholar 

  33. Wong, K., Kwon, K. Y. & Bartels, L. Surface dynamics of benzenethiol molecules. Appl. Phys. Lett. 88, 183106 (2006).

    Google Scholar 

  34. Guo, X. F. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356–359 (2006).

    CAS  PubMed  Google Scholar 

  35. Kiguchi, M. et al. Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes. Phys. Rev. Lett. 101, 046801 (2008).

    CAS  PubMed  Google Scholar 

  36. Sykes, E., Han, P., Kandel, S., Kelly, K., McCarty, G. & Weiss, P. Substrate-mediated interactions and intermolecular forces between molecules adsorbed on surfaces. Acc. Chem. Res. 36, 945–953 (2003).

    CAS  PubMed  Google Scholar 

  37. Pawin, G., Wong, K. L., Kwon, K. Y. & Bartels, L. A homomolecular porous network at a Cu(111) surface. Science 313, 961–962 (2006).

    CAS  PubMed  Google Scholar 

  38. Stranick, S. J., Kamna, M. M. & Weiss, P. S. Atomic-scale dynamics of a 2-dimensional gas-solid interface. Science 266, 99–102 (1994).

    CAS  PubMed  Google Scholar 

  39. Rao, B., Kwon, K., Zhang, J., Liu, A. & Bartels, L. Low-temperature mobility and structure formation of a prochiral aromatic thiol (2,5-dichlorothiophenol) on Cu(111). Langmuir 20, 4406–4412 (2004).

    CAS  PubMed  Google Scholar 

  40. Blunt, M. O. et al. Random tiling and topological defects in a two-dimensional molecular network. Science 322, 1077–1081 (2008).

    CAS  PubMed  Google Scholar 

  41. Moessner, R., Sondhi, S. L. & Fradkin, E. Short-ranged resonating valence bond physics, quantum dimer models, and Ising gauge theories. Phys. Rev. B 65, 024504 (2002).

    Google Scholar 

  42. Otero, R. et al. Elementary structural motifs in a random network of cytosine adsorbed on a gold(111) surface. Science 319, 312–315 (2008).

    CAS  PubMed  Google Scholar 

  43. Heinrich, A., Lutz, C., Gupta, J. & Eigler, D. Molecule cascades. Science 298, 1381–1387 (2002).

    CAS  PubMed  Google Scholar 

  44. Kuhnle, A., Linderoth, T., Hammer, B. & Besenbacher, F. Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy. Nature 415, 891–893 (2002).

    CAS  PubMed  Google Scholar 

  45. Barlow, S. M. et al. Polymorphism in supramolecular chiral structures of R- and S-alanine on Cu(110). Surf. Sci. 590, 243–263 (2005).

    CAS  Google Scholar 

  46. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  PubMed  Google Scholar 

  47. Theobald, J. A., Oxtoby, N. S., Phillips, M. A., Champness, N. R. & Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 424, 1029–1031 (2003).

    CAS  PubMed  Google Scholar 

  48. Perdigao, L. M. A. et al. Bimolecular networks and supramolecular traps on Au(111). J. Phys. Chem. B 110, 12539–12542 (2006).

    CAS  PubMed  Google Scholar 

  49. Zhang, H. M. et al. One-step preparation of large-scale self-assembled monolayers of cyanuric acid and melamine supramolecular species on Au(111) surfaces. J. Phys. Chem. C 112, 4209–4218 (2008).

    CAS  Google Scholar 

  50. Yokoyama, T., Yokoyama, S., Kamikado, T., Okuno, Y. & Mashiko, S. Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 413, 619–621 (2001).

    CAS  PubMed  Google Scholar 

  51. Pawin, G. et al. Surface coordination network based on substrate-derived metal adatoms with local charge excess. Angew. Chem. Int. Ed. 47, 8442–8445 (2008).

    CAS  Google Scholar 

  52. Bohringer, M. et al. Two-dimensional self-assembly of supramolecular clusters and chains. Phys. Rev. Lett. 83, 324–327 (1999).

    CAS  Google Scholar 

  53. Breitruck, A., Hoster, H. E., Meier, C., Ziener, U. & Behm, R. J. Interaction of Cu atoms with ordered 2D oligopyridine networks. Surf. Sci. 601, 4200–4205 (2007).

    CAS  Google Scholar 

  54. Schlickum, U. et al. Chiral kagome lattice from simple ditopic molecular bricks. J. Am. Chem. Soc. 130, 11778–11782 (2008).

    CAS  PubMed  Google Scholar 

  55. Pawin, G. et al. A quantitative approach to hydrogen bonding at a metal surface. J. Am. Chem. Soc. 129, 12056–12057 (2007).

    CAS  PubMed  Google Scholar 

  56. Kwon, K. Y. et al. H-atom position as pattern-determining factor in arenethiol films. J. Am. Chem. Soc. 131, 5540–5545 (2009).

    CAS  PubMed  Google Scholar 

  57. Chen, W. et al. Two-dimensional pentacene: 3,4,9,10-perylenetetracarboxylic dianhydride supramolecular chiral networks on Ag(111). J. Am. Chem. Soc. 130, 12285–12289 (2008).

    CAS  PubMed  Google Scholar 

  58. Schnadt, J. et al. Extended one-dimensional supramolecular assembly on a stepped surface. Phys. Rev. Lett. 100, 046103 (2008).

    CAS  PubMed  Google Scholar 

  59. Otero, R. et al. Guanine quartet networks stabilized by cooperative hydrogen bonds. Angew. Chem. Int. Ed. 44, 2270–2275 (2005).

    CAS  Google Scholar 

  60. Tait, S. L. et al. Assembling isostructural metal-organic coordination architectures on Cu(100), Ag(100) and Ag(111) substrates. Chem. Phys. Chem. 9, 2495–2499 (2008).

    CAS  PubMed  Google Scholar 

  61. Schickum, U. et al. Metal-organic honeycomb nanomeshes with tunable cavity size. Nano Lett. 7, 3813–3817 (2007).

    Google Scholar 

  62. Kuhne, D. et al. High-quality 2D metal-organic coordination network providing giant cavities within mesoscale domains. J. Am. Chem. Soc. 131, 3881–3883 (2009).

    PubMed  Google Scholar 

  63. Lin, N., Dmitriev, A., Weckesser, J., Barth, J. V. & Kern, K. Real-time single-molecule imaging of the formation and dynamics of coordination compounds. Angew. Chem. Int. Ed. 41, 4779–4783 (2002).

    CAS  Google Scholar 

  64. Langner, A., Tait, S. L., Lin, N., Rajadurai, C., Ruben, M. & Kern, K. Self-recognition and self-selection in multicomponent supramolecular coordination networks on surfaces. Proc. Natl Acad. Sci. USA 104, 17927–17930 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Stepanow, S. et al. Surface-assisted assembly of 2D metal-organic networks that exhibit unusual threefold coordination symmetry. Angew. Chem. Int. Ed. 46, 710–713 (2007).

    CAS  Google Scholar 

  66. Jensen, S. & Baddeley, C. J. Formation of PTCDI-based metal organic structures on a Au(111) surface modified by 2-D Ni clusters. J. Phys. Chem. C 112, 15439–15448 (2008).

    CAS  Google Scholar 

  67. Dmitriev, A., Spillmann, H., Lin, N., Barth, J. V. & Kern, K. Modular assembly of two-dimensional metal-organic coordination networks at a metal surface. Angew. Chem. Int. Ed. 42, 2670–2673 (2003).

    CAS  Google Scholar 

  68. Langner, A., Tait, S. L., Lin, N., Chandrasekar, R., Ruben, M. & Kern, K. Ordering and stabilization of metal-organic coordination chains by hierarchical assembly through hydrogen bonding at a surface. Angew. Chem. Int. Ed. 47, 8835–8838 (2008).

    CAS  Google Scholar 

  69. Venkataraman, D., Du, Y. H., Wilson, S. R., Hirsch, K. A., Zhang, P. & Moore, J. S. A coordination geometry table of the d-block elements and their ions. J. Chem. Educ. 74, 915–918 (1997).

    CAS  Google Scholar 

  70. Seitsonen, A. P. et al. Density functional theory analysis of carboxylate-bridged diiron units in two-dimensional metal-organic grids. J. Am. Chem. Soc. 128, 5634–5635 (2006).

    CAS  PubMed  Google Scholar 

  71. Gourdon, A. On-surface covalent coupling in ultrahigh vacuum. Angew. Chem. Int. Ed. 47, 6950–6953 (2008).

    CAS  Google Scholar 

  72. Nyffenegger, R. M. & Penner, R. M. Nanometer-scale electropolymerization of aniline using the scanning tunneling microscope. J. Phys. Chem. 100, 17041–17049 (1996).

    CAS  Google Scholar 

  73. Ullmann, F., Meyer, G. M., Loewenthal, O. & Gilli, O. Ueber symmetrische biphenylderivate. Justus Liebig's Annalen der Chemie 331, 38 (1904).

    Google Scholar 

  74. Xi, M. & Bent, B. E. Mechanisms of the Ullmann coupling reaction in adsorbed monolayers. J. Am. Chem. Soc. 115, 7426–7433 (1993).

    CAS  Google Scholar 

  75. McCarty, G. S. & Weiss, P. S. Formation and manipulation of protopolymer chains. J. Am. Chem. Soc. 126, 16772–16776 (2004).

    CAS  PubMed  Google Scholar 

  76. Grill, L., Dyer, M., Lafferentz, L., Persson, M., Peters, M. V. & Hecht, S. Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotech. 2, 687–691 (2007).

    CAS  Google Scholar 

  77. Lafferentz, L., Ample, F., Yu, H., Hecht, S., Joachim, C. & Grill, L. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

    CAS  PubMed  Google Scholar 

  78. Lipton-Duffin, J. A., Ivasenko, O., Perepichka, D. F. & Rosei, F. Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 5, 592–597 (2009).

    CAS  PubMed  Google Scholar 

  79. Weigelt, S. et al. Covalent interlinking of an aldehyde and an amine on a Au(111) surface in ultrahigh vacuum. Angew. Chem. Int. Ed. 46, 9227–9230 (2007).

    CAS  Google Scholar 

  80. Treier, M., Richardson, N. V. & Fasel, R. Fabrication of surface-supported low-dimensional polyimide networks. J. Am. Chem. Soc. 130, 14054–14055 (2008).

    CAS  PubMed  Google Scholar 

  81. Boz, S., Stohr, M., Soydaner, U. & Mayor, M. Protecting-group-controlled surface chemistry - organization and heat-induced coupling of 4,4′-di(tert-butoxycarbonylamino)biphenyl on metal surfaces. Angew. Chem. Int. Ed. 48, 3179–3183 (2009).

    CAS  Google Scholar 

  82. Zwaneveld, N. A. A. et al. Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc. 130, 6678–6679 (2008).

    CAS  PubMed  Google Scholar 

  83. Matena, M., Riehm, T., Stohr, M., Jung, T. A. & Gade, L. H. Transforming surface coordination polymers into covalent surface polymers: Linked polycondensed aromatics through oligomerization of N-heterocyclic carbene intermediates. Angew. Chem. Int. Ed. 47, 2414–2417 (2008).

    CAS  Google Scholar 

  84. Veld, M. I., Iavicoli, P., Haq, S., Amabilino, D. B. & Raval, R. Unique intermolecular reaction of simple porphyrins at a metal surface gives covalent nanostructures. Chem. Comm. 1536–1538 (2008).

  85. N'Diaye, A. T., Bleikamp, S., Feibelman, P. J. & Michely, T. Two-dimensional Ir cluster lattice on a graphene moire on Ir(111). Phys. Rev. Lett. 97, 215501 (2006).

    PubMed  Google Scholar 

  86. Clair, S., Pons, W., Brune, H., Kern, K. & Barth, J. V. Mesoscopic metallosupramolecular texturing by hierarchic assembly. Angew. Chem. Int. Ed. 44, 7294–7297 (2005).

    CAS  Google Scholar 

  87. Hatzor, A. & Weiss, P. Molecular rulers for scaling down nanostructures. Science 291, 1019–1020 (2001).

    CAS  PubMed  Google Scholar 

  88. Yoshimoto, S. et al. Epitaxial supramolecular assembly of fullerenes formed by using a coronene template on a Au(111) surface in solution. J. Am. Chem. Soc. 129, 4366–4376 (2007).

    CAS  PubMed  Google Scholar 

  89. Saywell, A. et al. Electrospray deposition of C-60 on a hydrogen-bonded supramolecular network. J. Phys. Chem. C 112, 7706–7709 (2008).

    CAS  Google Scholar 

  90. Madueno, R., Raisanen, M. T., Silien, C. & Buck, M. Functionalizing hydrogen-bonded surface networks with self-assembled monolayers. Nature 454, 618–621 (2008).

    CAS  PubMed  Google Scholar 

  91. Stepanow, S. et al. Steering molecular organization and host-guest interactions using two-dimensional nanoporous coordination systems. Nature Mater. 3, 229–233 (2004).

    CAS  Google Scholar 

  92. Stepanow, S., Lin, N., Barth, J. V. & Kern, K. Non-covalent binding of fullerenes and biomolecules at surface-supported metallosupramolecular receptors. Chem. Comm. 2153–2155 (2006).

  93. Decker, R. et al. Using metal-organic templates to steer the growth of Fe and Co nanoclusters. Appl. Phys. Lett. 93, 243102 (2008).

    Google Scholar 

  94. Schiffrin, A. et al. Self-aligning atomic strings in surface-supported biomolecular gratings. Phys. Rev. B 78, 035424 (2008).

    Google Scholar 

  95. Horvath, J. D., Koritnik, A., Kamakoti, P., Sholl, D. S. & Gellman, A. J. Enantioselective separation on a naturally chiral surface. J. Am. Chem. Soc. 126, 14988–14994 (2004).

    CAS  PubMed  Google Scholar 

  96. Zaera, F. Chiral modification of solid surfaces: A molecular view. J. Phys. Chem. C 112, 16196–16203 (2008).

    CAS  Google Scholar 

  97. Humblot, V., Lorenzo, M. O., Baddeley, C. J., Haq, S. & Raval, R. Local and global chirality at surfaces: Succinic acid versus tartaric acid on Cu(110). J. Am. Chem. Soc. 126, 6460–6469 (2004).

    CAS  PubMed  Google Scholar 

  98. Spillmann, H., Dmitriev, A., Lin, N., Messina, P., Barth, J. V. & Kern, K. Hierarchical assembly of two-dimensional homochiral nanocavity arrays. J. Am. Chem. Soc. 125, 10725–10728 (2003).

    CAS  PubMed  Google Scholar 

  99. Weckesser, J., De Vita, A., Barth, J. V., Cai, C. & Kern, K. Mesoscopic correlation of supramolecular chirality in one-dimensional hydrogen-bonded assemblies. Phys. Rev. Lett. 87, 096101 (2001).

    CAS  PubMed  Google Scholar 

  100. Collman, J. P., Zhang, X. M., Lee, V. J., Uffelman, E. S. & Brauman, J. I. Regioselective and enantioselective epoxidation catalyzed by metalloporphyrins. Science 261, 1404–1411 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author's work on this review was supported by the US Department of Energy under Grant No. DE-FG02-03ER15464 and by the National Science Foundation under Grant No. CHE-0647152.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartels, L. Tailoring molecular layers at metal surfaces. Nature Chem 2, 87–95 (2010). https://doi.org/10.1038/nchem.517

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.517

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing