Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Towards quantum chemistry on a quantum computer

Abstract

Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The quantum algorithm for calculating energies of many-body quantum systems and our experimental implementation with linear optics.
Figure 2: Experimental quantum algorithm results.

Similar content being viewed by others

References

  1. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    Article  Google Scholar 

  2. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    Article  CAS  Google Scholar 

  3. Head-Gordon, M. & Artacho, E. Chemistry on the computer. Physics Today 61(4), 58–63 (2008).

    Article  Google Scholar 

  4. Hung, L. & Carter, E. A. Accurate simulations of metals at the mesoscale: Explicit treatment of 1 million atoms with quantum mechanics. Chem. Phys. Lett. 475, 163–170 (2009).

    Article  CAS  Google Scholar 

  5. Chelikowsky, J. R. et al. Pseudopotentials on grids: Application to the electronic, optical, and vibrational properties of silicon nanocrystals. J. Comput. Theor. Nanosci. 6, 1247–1261 (2009).

    Article  CAS  Google Scholar 

  6. Dreuw, A. & Head-Gordon, M. Failure of time-dependent density functional theory for long-range charge-transfer excited states: The zincbacteriochlorin-bacterlochlorin and bacteriochlorophyll-spheroidene complexes. J. Am. Chem. Soc. 126, 4007–4016 (2004).

    Article  CAS  Google Scholar 

  7. Levine, B. G. & Martinez, T. J. Isomerization through conical intersections. Ann. Rev. Phys. Chem. 58, 613–634 (2007).

    Article  CAS  Google Scholar 

  8. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  CAS  Google Scholar 

  9. Van Voorhis, T. & Head-Gordon, M. Benchmark variational coupled cluster doubles results. J. Chem. Phys. 113, 8873–8879 (2000).

    Article  CAS  Google Scholar 

  10. Abrams, D. & Lloyd, S. Simulation of many-body fermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 2586–2586 (1997).

    Article  CAS  Google Scholar 

  11. Kassal, I. Jordan, S. P., Love, P. J., Mohseni, M. & Aspuru-Guzik, A. Polynomial-time quantum algorithm for the simulation of chemical dynamics Proc. Natl Acad. Sci. USA 105, 18681–18686 (2008).

    Article  CAS  Google Scholar 

  12. Zalka. C. Efficient simulation of quantum systems by quantum computers. Proc. R. Soc. Lond. A 454, 313–322 (1998).

    Article  Google Scholar 

  13. Kassal, I. & Aspuru-Guzik, A. Quantum algorithm for molecular properties and geometry optimization. J. Chem. Phys. (in the press); preprint at http://arxiv.org/abs/0908.1921 (2009).

  14. Lidar D. A. & Wang, H. Calculating the thermal rate constant with exponential speedup on a quantum computer. Phys. Rev. E 59, 2429–2438 (1999).

    Article  CAS  Google Scholar 

  15. Aspuru-Guzik, A., Dutoi, A., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

    Article  CAS  Google Scholar 

  16. Brown, K. R., Clark, R. J. & Chuang, I. L. Limitations of quantum simulation examined by simulating a pairing Hamiltonian using nuclear magnetic resonance. Phys. Rev. Lett. 97, 050504 (2006).

    Article  Google Scholar 

  17. Clark C. R., Metodi, T. S., Gasster, S. D. & Brown, K. R. Resource requirements for fault-tolerant quantum simulation: The ground state of the transverse Ising model. Phys. Rev. A 79, 062314 (2009).

    Article  Google Scholar 

  18. Somaroo, S., Tseng, C. H., Havel, T. F., Laflamme, R. & Cory, D. G. Quantum simulations on a quantum computer. Phys. Rev. Lett. 82, 5381–5384 (1999).

    Article  CAS  Google Scholar 

  19. Yang, X., Wang, A. M., Xu, F. & Du. J. Experimental simulation of a pairing Hamiltonian on an NMR quantum computer. Chem. Phys. Lett. 422, 20–24 (2006).

    Article  CAS  Google Scholar 

  20. Friedenauer, A., Schmitz, H., Glueckert, J. T., Porras, D. & Schaetz, T. Simulating a quantum magnet with trapped ions. Nature Phys. 4, 757–761 (2008).

    Article  CAS  Google Scholar 

  21. Gerritsma, R. et al. Quantum simulation of the Dirac equation. Preprint at: http://arxiv.org/abs/0909.0674 (2009).

  22. Vidal, G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003).

    Article  Google Scholar 

  23. Schmidt-Kaler, F. et al. Realization of the Cirac–Zoller controlled-NOT quantum gate Nature 422, 408–411 (2003).

    Article  CAS  Google Scholar 

  24. Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003).

    Article  CAS  Google Scholar 

  25. O'Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).

    Article  CAS  Google Scholar 

  26. Plantenberg, H. J., de Groot, P. C., Harmans, C. J. P. M. & Mooij, J. E. Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nature 447, 836–839 (2007).

    Article  CAS  Google Scholar 

  27. Pashkin, Y. A. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823–826 (2003).

    Article  CAS  Google Scholar 

  28. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  CAS  Google Scholar 

  29. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007).

    Article  CAS  Google Scholar 

  30. Lanyon, B. P. et al. Experimental demonstration of a compiled version of Shor's Algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505 (2007).

    Article  CAS  Google Scholar 

  31. Lanyon, B. P. et al. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nature Phys. 5, 134–140 (2009).

    Article  CAS  Google Scholar 

  32. Kitaev, A. Quantum measurements and the Abelian Stabilizer Problem. Preprint at: http://arxiv.org/abs/quant-ph/9511026 (1995).

  33. Dobsicek, M., Johansson, G., Shumeiko, V. S. & Wendin, G. Arbitrary accuracy iterative phase estimation algorithm as a two qubit benchmark. Phys. Rev. A 76, 030306(R) (2007).

    Article  Google Scholar 

  34. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2001).

    Google Scholar 

  35. Helgaker, T., Jorgensen, P. & Olsen, J. Modern Electronic Structure Theory (Wiley, 2000).

    Google Scholar 

  36. Xiu-Mei, L., Jun, L. & Xian-Ping, S. Experimental realization of arbitrary accuracy iterative phase estimation algorithms on ensemble quantum computers. Chinese Phys. Lett. 24, 3316–3319 (2007).

    Article  Google Scholar 

  37. Braunstein, S. L. et al. Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054–1057 (1999).

    Article  CAS  Google Scholar 

  38. Chiaverini J. et al. Implementation of the semiclassical quantum Fourier transform in a scalable system. Science 308, 997–1000 (2005).

    Article  CAS  Google Scholar 

  39. Nielsen, M. A. Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004).

    Article  Google Scholar 

  40. Wu, L.-A., Byrd, M. S. & Lidar, D. A. Polynomial-time simulation of pairing models on a quantum computer. Phys. Rev. Lett. 89, 057904 (2002).

    Article  Google Scholar 

  41. Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum adiabatic evolution algorithms with different paths. Science 292, 472–475 (2000).

    Article  Google Scholar 

  42. Grangier, P., Sanders, B. & Vuckovic, J. (eds) Special issue: Focus on single photons on demand New J. Phys. 6, (2004).

  43. Cheung, J., Migdal, A. & Rastello, M.-L. (eds) Special issue: Single-photon: detectors, applications, and measurement methods. J. Mod. Opt. 56, 2–3 (2009).

    Article  Google Scholar 

  44. Dür, W., Bremner, M. J. & Briegel, H. J. Quantum simulation of interacting high-dimensional systems: the influence of noise. Phys. Rev. A 78, 052325 (2008).

    Article  Google Scholar 

  45. Jané, E., Vidal, G., Dür, W., Zoller, P. & Cirac, J. I. Simulation of quantum dynamics with quantum optical systems. Quant. Inf. Comp. 3, 15–37 (2003).

    Google Scholar 

  46. Hehre, W. J., Stewart, R. F. & Pople, J. A. Self-consistent molecular orbital methods I. Use of Gaussian expansions of slater type atomic orbitals. J. Chem. Phys. 51, 2657–2664 (1969).

    Article  CAS  Google Scholar 

  47. Szabo, A. & Ostlund, N. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover Publications, 1996).

    Google Scholar 

  48. Liao, Y. et al. Electro-optic integration of embedded electrodes and waveguides in LiNbO3using a femtosecond laser. Opt. Lett. 33, 2281–2283 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Perdomo, A. Steinberg, P. J. Love, A. D. Dutoi, G. Vidal and A. Fedrizzi for discussions. We acknowledge financial support from the Australian Research Council (ARC) Federation Fellow and Centre of Excellence programs, and the IARPA-funded US Army Research Office Contracts W911NF-0397 and W911NF-07-0304. B.J.P. was the recipient of an ARC Queen Elizabeth II Fellowship (DP0878523) and I.K. a recipient of the Joyce and Zlatko Baloković Scholarship. A.A.G. thanks the Alfred P. Sloan Foundation and the Camille and Henry Dreyfus Foundation for support.

Author information

Authors and Affiliations

Authors

Contributions

B.P.L., J.D.W., I.K., M.M., A.A.G. and A.G.W. conceived and designed the experiments, B.P.L., G.G.G., M.E.G. and M.P.A. performed the experiments, B.P.L. and G.G.G. analysed the data, J.D.W. performed the classical preprocessing. All authors discussed the results and co-wrote the manuscript.

Corresponding authors

Correspondence to B. P. Lanyon or A. Aspuru-Guzik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 663 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanyon, B., Whitfield, J., Gillett, G. et al. Towards quantum chemistry on a quantum computer. Nature Chem 2, 106–111 (2010). https://doi.org/10.1038/nchem.483

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.483

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing