Analysis of the reactivity and selectivity of fullerene dimerization reactions at the atomic level

Abstract

High-resolution transmission electron microscopy has proved useful for its ability to provide time-resolved images of small molecules and their movements. One of the next challenges in this area is to visualize chemical reactions by monitoring time-dependent changes in the atomic positions of reacting molecules. Such images may provide information that is not available with other experimental methods. Here we report a study on bimolecular reactions of fullerene and metallofullerene molecules inside carbon nanotubes as a function of electron dose. Images of how the fullerenes move during the dimerization process reveal the specific orientations in which two molecules interact, as well as how bond reorganization occurs after their initial contact. Studies on the concentration, specimen temperature, effect of catalyst and accelerating voltage indicate that the reactions can be imaged under a variety of conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A series of high-resolution images of C60 molecules gradually bonded and finally fused with accumulated electron dose.
Figure 2: Orientation and concentration of fullerene molecules within the carbon nanotubes and implications for their reactions.
Figure 3: Temperature dependence on electron-induced transformations in fullerene peapods at 120 kV.
Figure 4: Effect of accelerating voltage and applications of low-voltage imaging.

References

  1. 1

    Rao, A. M. et al. Photoinduced polymerization of solid C60 films. Science 259, 955–957 (1993).

    CAS  Article  Google Scholar 

  2. 2

    Smith, B. W., Monthioux, M. & Luzzi, D. E. Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials. Chem. Phys. Lett. 315, 31–36 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Bandow, S., Takizawa, M., Hirahara, K., Yudasaka, M. & Iijima, S. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett. 337, 48–54 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Hernandez, E. et al. Fullerene coalescence in nanopeapods: a path to novel tubular carbon. Nano Lett. 3, 1037–1042 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Smith, B. W., Monthioux, M. & Luzzi, D. E. Encapsulated C60 in carbon nanotubes. Nature 396, 323–324 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Khlobystov, A. N. in Chemistry of Carbon Nanotubes (eds Basiuk, V. A. & Basiuk, E. V.), Ch. 31 (American Scientific Publisher, 2007).

    Google Scholar 

  7. 7

    Urita, K. et al. Defect-induced atomic migration in carbon nanopeapod: tracking the single-atom dynamic behavior. Nano Lett. 4, 2451–2454 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Liu, Z. et al. Transmission electron microscopy imaging of individual functional groups of fullerene derivatives. Phys. Rev. Lett. 96, 088304 (2006).

    Article  Google Scholar 

  9. 9

    Koshino, M. et al. Imaging of single organic molecules in motion. Science 316, 853 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Koshino, M., Solin, N., Tanaka, T., Isobe, H. & Nakamura, E. Imaging the passage of a single hydrocarbon chain through a nanopore. Nature Nanotech. 3, 595–597 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Zewail, A. H. 4D ultrafast electron diffraction, crystallography, and microscopy. Annu. Rev. Phys. Chem. 57, 65–103 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Reimer, L. & Kohl, H. Transmission Electron Microscopy 5th edn (Springer, 2008).

    Google Scholar 

  13. 13

    Kataura, H. et al. Optical properties of fullerene and non-fullerene peapods. Appl. Phys. A 74, 349–354 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Okubo, S. et al. Diameter-dependent band gap modification of single-walled carbon nanotubes by encapsulated fullerenes. J. Phys. Chem. C 113, 571–575 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Sato, Y., Suenaga, K., Okubo, S., Okazaki, T. & Iijima, S. Structures of D5d-C80 and Ih-Er3N@C80 fullerenes and their rotation inside carbon nanotubes demonstrated by aberration-corrected electron microscopy. Nano Lett. 7, 3704–3708 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Menon, M., Subbaswamy, K. R. & Sawtarie, M. Structure and properties of C60 dimers by generalized tight-binding molecular dynamics. Phys. Rev. B 49, 13966–13969 (1994).

    CAS  Article  Google Scholar 

  17. 17

    Adams, G. B., Page, J. B., Sankey, O. F. & O'Keeffe, M. Polymerized C60 studied by first-principles molecular dynamics. Phys. Rev. B 50, 17471–17479 (1994).

    CAS  Article  Google Scholar 

  18. 18

    Kim, Y.-H., Lee, I.-H., Chang, K. J. & Lee, S. Dynamics of fullerene coalescence. Phys. Rev. Lett. 90, 065501 (2003).

    Article  Google Scholar 

  19. 19

    Kaur, N., Dharamvir, K. & Jindal, V. K. Dimerization and fusion of two C60 molecules. Chem. Phys. 344, 176–184 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Strout, D. L. et al. A theoretical study of buckminsterfullerene reaction products: C60 + C60 . Chem. Phys. Lett. 214, 576–582 (1993).

    CAS  Article  Google Scholar 

  21. 21

    Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes (Academic Press, 1996).

    Google Scholar 

  22. 22

    Diudea, M. V. & Nagy, C. L. Periodic Nanostructures: Developments in Fullerene Science, Vol. 7 (Springer, 2007).

    Google Scholar 

  23. 23

    Scuseria, G. E. What is the lowest-energy isomer of the C60 dimer? Chem. Phys. Lett. 257, 583–586 (1996).

    CAS  Article  Google Scholar 

  24. 24

    Wang, G. W., Komatsu, K., Mmurata, Y. & Shiro, M. Synthesis and X-ray structure of dumb-bell-shaped C120 . Nature 387, 583–586 (1997).

    CAS  Article  Google Scholar 

  25. 25

    Fowler, P. W., Mitchell, D., Taylor, R. & Seifert, G. Structures and energetics of dimeric fullerene and fullerene oxide derivatives. J. Chem. Soc., Perkin Trans. 2 1901–1905 (1997).

  26. 26

    Liu, Z., Suenaga, K. & Iijima, S. Imaging the structure of an individual C60 fullerene molecule and its deformation process using HRTEM with atomic sensitivity. J. Am. Chem. Soc. 129, 6666–6667 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Chorro, M. et al. Discriminated structural behaviour of C60 and C70 peapods under extreme conditions. Europhys. Lett. 79, 56003 (2007).

    Article  Google Scholar 

  28. 28

    Feng, L. et al. Synthesis and characterization of a bisadduct of La@C82 . J. Am. Chem. Soc. 128, 5990–5991 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Fuller, T. & Banhart, F. In situ observation of the formation and stability of single fullerene molecules under electron irradiation. Chem. Phys. Lett. 254, 372–378 (1996).

    Article  Google Scholar 

  30. 30

    Sloan, J. et al. The size distribution, imaging and obstructing properties of C60 and higher fullerenes formed within arc-grown single walled carbon nanotubes. Chem. Phys. Lett. 316, 191–198 (2000).

    CAS  Article  Google Scholar 

  31. 31

    Warner, J. H. et al. Rotating fullerene chains in carbon nanopeapods. Nano Lett. 8, 2328–2335 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Reimer, L. in Physical Aspects of Electron Microscopy and Microbeam Analysis (eds Siegel, B. M. & Beaman, D. R.) 231–245 (Wiley, 1975).

    Google Scholar 

  33. 33

    Knapek, E. Properties of organic specimens and their supports at 4 K under irradiation in an electron microscope. Ultramicroscopy 10, 71–86 (1982).

    CAS  Article  Google Scholar 

  34. 34

    Fujiyoshi, Y. The structural study of membrane proteins by electron crystallography. Adv. Biophys. 35, 25–80 (1998).

    CAS  Article  Google Scholar 

  35. 35

    Banhart, F. Irradiation effects in carbon nanostructures. Rep. Progr. Phys. 62, 1181–1221 (1999).

    CAS  Article  Google Scholar 

  36. 36

    Urita, K., Suenaga, K., Sugai, T., Shinohara, H. & Iijima, S. In situ observation of thermal relaxation of interstitial-vacancy pair defects in a graphite gap. Phys. Rev. Lett. 94, 155502 (2005).

    Article  Google Scholar 

  37. 37

    Pfeiffer, R. et al. Dynamics of carbon nanotube growth from fullerenes. Nano Lett. 7, 2428–2434 (2007).

    CAS  Article  Google Scholar 

  38. 38

    Warner, J. H. et al. Investigating the diameter-dependent stability of single-walled carbon nanotubes. ACS Nano 3, 1557–1563 (2009).

    CAS  Article  Google Scholar 

  39. 39

    Cosslette, V. E. Radiation damage in the high resolution electron microscopy of biological materials: a review. J. Microsc. 113, 113–129 (1978).

    Article  Google Scholar 

  40. 40

    Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

    CAS  Article  Google Scholar 

  41. 41

    Tada, T. & Kanayama, T. Nanolithography using fullerene films as an electron beam resist. Jpn J. Appl. Phys. 35, L63–L65 (1996).

    CAS  Article  Google Scholar 

  42. 42

    Zhao, Y. B., Poirier, D. M., Pechman, R. J. & Weaver, J. H. Electron stimulated polymerization of solid C60 . Appl. Phys. Lett. 64, 577–579 (1994).

    CAS  Article  Google Scholar 

  43. 43

    Warner, J. H. et al. One-dimensional confined motion of single metal atoms inside double-walled carbon nanotubes. Phys. Rev. Lett. 102, 195504 (2009).

    Article  Google Scholar 

  44. 44

    Matsuda, K., Maniwa, Y. & Kataura, H. Highly rotational C60 dynamics inside single-walled carbon nanotubes: NMR observations. Phys. Rev. B 77, 075421 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Drs I. Ishikawa and Y. Kondo at JEOL for the development of cryo-TEM, and Ms N. Kibe at the National Institute of Advanced Industrial Science and Technology for the access to a field-emission scanning electron microscope instrument. This study was partly supported by the Ministry of Education, Culture, Sports, Science and Technology (KAKENHI (Grants-in-Aid for Scientific Research) 21710116 to M.K, 18201017 to H.K., 18655012 to E.N. and 19054017 to K.S.), Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (JST) (K.S.), and Exploratory Research for Advanced Technology, JST (M.K. and E.N.).

Author information

Affiliations

Authors

Contributions

M.K. conceived and designed the experiments, and prepared the fullerene peapod samples. TEM measurements and their analysis were performed by M.K. and Y.N. H.K. synthesized the nanotubes by laser ablation. T.O. contributed fullerene and metallofullerene materials, and prepared the C82, La@C82 and Er@C82 peapods. The development of an aberration-corrected TEM at 80 kV was supervised by K.S. and S.I. The helium-stage TEM with aberration corrector was supervised by K.S. and E.N. M.K., K.S. and E.N. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Masanori Koshino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2579 kb)

Supplementary information

Supplementary movie S1 (MOV 899 kb)

Supplementary information

Supplementary movie S2 (MOV 1224 kb)

Supplementary information

Supplementary movie S3 (MOV 902 kb)

Supplementary information

Supplementary movie S4 (MOV 1004 kb)

Supplementary information

Supplementary movie S5 (MOV 362 kb)

Supplementary information

Supplementary movie S6 (MOV 2783 kb)

Supplementary information

Supplementary movie S7 (MOV 1123 kb)

Supplementary information

Supplementary movie S8 (MOV 3632 kb)

Supplementary information

Supplementary movie S9 (MOV 1627 kb)

Supplementary information

Supplementary movie S10 (MOV 0 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koshino, M., Niimi, Y., Nakamura, E. et al. Analysis of the reactivity and selectivity of fullerene dimerization reactions at the atomic level. Nature Chem 2, 117–124 (2010). https://doi.org/10.1038/nchem.482

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing