Vapour-phase gold-surface-mediated coupling of aldehydes with methanol

Abstract

Selective coupling of oxygenates is critical to many synthetic processes, including those necessary for the development of alternative fuels. We report a general process for selective coupling of aldehydes and methanol as a route to ester synthesis. All steps are mediated by oxygen-covered metallic gold nanoparticles on Au(111). Remarkably, cross-coupling of methanol with formaldehyde, acetaldehyde, benzaldehyde and benzeneacetaldehyde to methyl esters is promoted by oxygen-covered Au(111) below room temperature with high selectivity. The high selectivity is attributed to the ease of nucleophilic attack of the aldehydes by the methoxy intermediate—formed from methanol on the surface—which yields the methyl esters. The competing combustion occurs via attack of both methanol and the aldehydes by oxygen. The mechanistic model constructed in this study provides insight into factors that control selectivity and clearly elucidates the crucial role of Au nanoparticles as active species in the catalytic oxidation of alcohols, even in solution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mass spectrometric studies of the cross-coupling of isotopically labelled methanol with four different aldehydes.
Figure 2: Schematic mechanism for coupling of methanol and aldehydes on oxygen-covered gold particles.
Figure 3: Relative selectivity of esterification versus combustion in the self-coupling of methanol and cross-coupling between methanol and aldehydes.

References

  1. 1

    Abad, A., Concepcion, P., Corma, A. & Garcia, H. A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew. Chem. Int. Ed. 44, 4066–4069 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Abad, A., Corma, A. & Garcia, H. Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: The molecular reaction mechanism. Chem. Eur. J. 14, 212–222 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Biella, S. & Rossi, M. Gas phase oxidation of alcohols to aldehydes or ketones catalysed by supported gold. Chem. Commun. 378–379 (2003).

  4. 4

    Carrettin, S. et al. Oxidation of glycerol using supported Pt, Pd and Au catalysts. Phys. Chem. Chem. Phys. 5, 1329–1336 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Enache, D. I., Knight, D. W. & Hutchings, G. J. Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts. Catal. Lett. 103 (1–2), 43–52 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Gong, J. & Mullins, C. B. Selective oxidation of ethanol to acetaldehyde on gold. J. Am. Chem. Soc. 130, 16458–16459 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Hayashi, T., Inagaki, T., Itayama, N. & Baba, H. Selective oxidation of alcohol over supported gold catalysts: methyl glycolate formation from ethylene glycol and methanol. Catal. Today. 117, 210–213 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Hou, W. B., Dehm, N. A. & Scott, R. W. J. Alcohol oxidations in aqueous solutions using Au, Pd, and bimetallic AuPd nanoparticle catalysts. J. Catal. 253, 22–27 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Jorgensen, B., Christiansen, S. E., Thomsen, M. L. D. & Christensen, C. H. Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: Efficient routes to acetic acid and ethyl acetate. J. Catal. 251, 332–337 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Su, F. Z. et al. Gold supported on nanocrystalline beta-Ga2O3 as a versatile bifunctional catalyst for facile oxidative transformation of alcohols, aldehydes, and acetals into esters. Chem. Eur. J. 14, 7131–7135 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Wang, L. C. et al. Solvent-free selective oxidation of alcohols by molecular oxygen over gold nanoparticles supported on beta-MnO2 nanorods. Appl. Catal. A 344, 150–157 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Wang, X. G. et al. Amphiphilic block copolymer-stabilized gold nanoparticles for aerobic oxidation of alcohols in aqueous solution. Chem. Commun. 4442–4444 (2008).

  13. 13

    Fristrup, P., Johansen, L. B. & Christensen, C. H. Mechanistic investigation of the gold-catalyzed aerobic oxidation of alcohols. Catal. Lett. 120, 184–190 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Fristrup, P., Johansen, L. B. & Christensen, C. H. Mechanistic investigation of the gold-catalyzed aerobic oxidation of aldehydes: added insight from Hammett studies and isotopic labelling experiments. Chem. Commun. 2750–2752 (2008).

  15. 15

    Abad, A., Almela, C., Corma, A. & Garcia, H. Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts. Tetrahedron 62, 6666–6672 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Nielsen, I. S., Taarning, E., Egeblad, K., Madsen, R. & Christensen, C. H. Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst. Catal. Lett. 116, 35–40 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Xu, B., Liu, X., Haubrich, J., Madix, R. J. & Friend, C. M. Selectivity control in gold-mediated esterification of methanol. Angew. Chem. Int. Ed. 48, 4206–4209 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Liu, X., Xu, B., Haubrich, J., Madix, R. J. & Friend, C. M. Surface-mediated self-coupling of ethanol on gold. J. Am. Chem. Soc. 131, 5757–5759 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Marsden, C. et al. Aerobic oxidation of aldehydes under ambient conditions using supported gold nanoparticle catalysts. Green Chem. 10, 168–170 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Mancuso, A. J., Huang, S. L. & Swern, D. Oxidation of long-chain and related alcohols to carbonyls by dimethyl-sulfoxide activated by oxalyl chloride. J. Org. Chem. 43, 2480–2482 (1978).

    CAS  Article  Google Scholar 

  21. 21

    Andreasen, A., Lynggaard, H., Stegelmann, C. & Stoltze, P. A microkinetic model of the methanol oxidation over silver. Surf. Sci. 544, 5–23 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Lambert, R. M., Williams, F. J., Cropley, R. L. & Palermo, A. Heterogeneous alkene epoxidation: past, present and future. J. Mol. Catal. A 228, 27–33 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Liu, X. Y., Madix, R. J. & Friend, C. M. Unraveling molecular transformations on surfaces: a critical comparison of oxidation reactions on coinage metals. Chem. Soc. Rev. 37, 2243–2261 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Wachs, I. E. & Madix, R. J. Selective oxidation of CH3OH to H2CO on a copper(110) catalyst. J. Catal. 53, 208–227 (1978).

    CAS  Article  Google Scholar 

  25. 25

    Wachs, I. E. & Madix, R. J. Oxidation of methanol on a silver (110) catalyst. Surf. Sci. 76, 531–558 (1978).

    CAS  Article  Google Scholar 

  26. 26

    Madix, R. J. Molecular-transformations on single-crystal metal-surfaces. Science 233, 1159–1166 (1986).

    CAS  Article  Google Scholar 

  27. 27

    Biella, S., Castiglioni, G. L., Fumagalli, C., Prati, L. & Rossi, M. Application of gold catalysts to selective liquid phase oxidation. Catal. Today. 72, 242–247 (2002).

    Article  Google Scholar 

  28. 28

    Biella, S., Prati, L. & Rossi, M. Gold catalyzed oxidation of aldehydes in liquid phase. J. Mol. Catal. A 197, 378–379 (2003).

    Article  Google Scholar 

  29. 29

    Wang, X. G. et al. Selective oxidation of alcohols to aldehydes and ketones over TiO2-supported gold nanoparticles in supercritical carbon dioxide with molecular oxygen. Appl. Catal. A 349, 86–90 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Min, B. K., Alemozafar, A. R., Pinnaduwage, D., Deng, X. & Friend, C. M. Efficient CO oxidation at low temperature on Au(111). J. Phys. Chem. B 110, 19833–9838 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Madix, R. J., Friend, C. M. & Liu, X. Y. Anticipating catalytic oxidation reactions on gold at high pressure (including liquid phase) from ultrahigh vacuum studies. J. Catal. 258, 410–413 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Saliba, N., Parker, D. H. & Koel, B. E. Adsorption of oxygen on Au(111) by exposure to ozone. Surf. Sci. 410, 270–282 (1998).

    CAS  Article  Google Scholar 

  33. 33

    Benziger, J. B., Ko, E. I. & Madix, R. J. Reactions of formaldehyde on W(100) and W(100)-(5x1)C. J. Catal. 64, 132–142 (1980).

    CAS  Article  Google Scholar 

  34. 34

    Stein, S. E. in NIST Chemistry WebBook (eds Linstrom, P. J. and Mallard, W. G.), NIST standard reference database number 69 (National Institute of Standards and Technology, 2009); available at <http://webbook.nist.gov>.

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of this work by the US Department of Energy, Basic Energy Sciences, under Grant No. FG02-84-ER13289. J.H. (Feodour-Lynen fellowship) acknowledges support through the A. v. Humboldt foundation. Correspondence and requests for materials should be addressed to C.F.

Author information

Affiliations

Authors

Contributions

B.X., X.L., J.H. and C.F. conceived and designed experiments, analysed and discussed results, and commented on the manuscript. B.X. performed the experiments and analysed data. B.X. and C.F. co-wrote the paper.

Corresponding author

Correspondence to Cynthia M. Friend.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 360 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, B., Liu, X., Haubrich, J. et al. Vapour-phase gold-surface-mediated coupling of aldehydes with methanol. Nature Chem 2, 61–65 (2010). https://doi.org/10.1038/nchem.467

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing