Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Template synthesis of precisely monodisperse silica nanoparticles within self-assembled organometallic spheres


One of the key challenges in materials science is to control the size and shape of inorganic nanoparticles with a high degree of precision, as these parameters have a significant influence on the nanoparticles' properties and potential applications. Here, we describe the preparation of highly monodisperse silica nanoparticles smaller than 5 nm in diameter by using self-assembled, hollow, spherical compounds as ‘endo-templates’. These coordination complexes with pendant sugar groups lining their interiors—assembled from 12 metal ions and 24 bis-pyridyl ligands containing glucose substituents—acted as structurally well-defined templates for the sol–gel condensation of alkoxysilanes. The polydispersities of the silica nanoparticles made with this method approached unity, with Mw/Mn < 1.01. The component ligands are modified easily, which enables an accurate expansion of the coordination complex and the subsequent control of the monodisperse silica nanoparticles that span molecular weights of 5,000 to 31,000 Da (corresponding to 2–4 nm in diameter). This method could be applicable to the preparation of other inorganic nanoparticles.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of silica nanoparticles within spheres 2.
Figure 2: 1H NMR spectra (500 MHz, 300 K, DMSO-d6:CDCl3 = 1:9) of sphere 2a and 2asilica.
Figure 3: Structural analyses of silica nanoparticles within spherical templates.
Figure 4: Molecular structures of spheres 2a,c that contain silica nanoparticles.


  1. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  2. Schmid, G. Nanoparticles: from Theory to Application (Wiley-VCH, 2004).

    Google Scholar 

  3. White, R. J., Luque, R., Budarin, V. L., Clark, J. H. & Macquarrie, D. J. Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev. 38, 481–494 (2009).

    Article  CAS  Google Scholar 

  4. Joo, S. H. et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169–172 (2001).

    Article  CAS  Google Scholar 

  5. Fröba, M., Köhn, R., Bouffaud, G., Richard, O. & van Tendeloo, G. Fe2O3 nanoparticles within mesoporous MCM-48 silica: in situ formation and characterization. Chem. Mater. 11, 2858–2865 (1999).

    Article  Google Scholar 

  6. Yang, B., Kamiya, S., Yoshida, K. & Shimizu, T. Confined organization of Au nanocrystals in glycolipid nanotube hollow cylinders. Chem. Commun. 500–501 (2004).

  7. Hermes, S. et al. Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew. Chem. Int. Ed. 44, 6237–6241 (2005).

    Article  CAS  Google Scholar 

  8. Pileni, M. P. Reverse micelles as microreactors. J. Phys. Chem. 97, 6961–6973 (1993).

    Article  CAS  Google Scholar 

  9. Kortan, A. R. et al. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc. 112, 1327–1332 (1990).

    Article  CAS  Google Scholar 

  10. Osseo-Asare, K. & Arriagada, F. J. Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids Surf. 50, 321–339 (1990).

    Article  CAS  Google Scholar 

  11. Esquena, J., Tadros, Th. F., Kostarelos, K. & Solans, C. Preparation of narrow size distribution silica particles using microemulsions. Langmuir 13, 6400–6406 (1997).

    Article  CAS  Google Scholar 

  12. Dickerson, M. B., Sandhage, K. H. & Naik, R. R. Protein- and peptide-directed syntheses of inorganic materials. Chem. Rev. 108, 4935–4978 (2008).

    Article  CAS  Google Scholar 

  13. Vriezema, D. M. et al. Self-assembled nanoreactors. Chem. Rev. 105, 1445–1489 (2005).

    Article  CAS  Google Scholar 

  14. Douglas, T. & Young, M. Host–guest encapsulation of materials by assembled virus protein cages. Nature 393, 152–155 (1998).

    Article  CAS  Google Scholar 

  15. Douglas, T. et al. Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv. Mater. 14, 415–418 (2002).

    Article  CAS  Google Scholar 

  16. McMillan, R. A. et al. Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nature Mater. 1, 247–252 (2002).

    Article  CAS  Google Scholar 

  17. Chasteen, N. D. & Harrison, P. M. Mineralization in ferritin: an efficient means of iron storage. J. Struct. Biol. 126, 182–194 (1999).

    Article  CAS  Google Scholar 

  18. Meldrum, F. C., Wade, V. J., Nimmo, D. L., Heywood, B. R. & Mann, S. Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 349, 684–687 (1991).

    Article  CAS  Google Scholar 

  19. Ueno, T. et al. Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. Angew. Chem. Int. Ed. 43, 2527–2530 (2004).

    Article  CAS  Google Scholar 

  20. Tominaga, M. et al. Finite, spherical coordination networks that self-organize from 36 small components. Angew. Chem. Int. Ed. 43, 5621–5625 (2004).

    Article  CAS  Google Scholar 

  21. Kamiya, N., Tominaga, M., Sato, S. & Fujita, M. Saccharide-coated M12L24 molecular spheres that form aggregates by multi-interaction with proteins. J. Am. Chem. Soc. 129, 3816–3817 (2007).

    Article  CAS  Google Scholar 

  22. Tominaga, M., Suzuki, K., Murase, T. & Fujita, M. 24-Fold endohedral functionalization of a self-assembled M12L24 coordination nanoball. J. Am. Chem. Soc. 127, 11950–11951 (2005).

    Article  CAS  Google Scholar 

  23. Sato, S. et al. Fluorous nanodroplets structurally confined in an organopalladium sphere. Science 313, 1273–1276 (2006).

    Article  CAS  Google Scholar 

  24. Suzuki, K., Kawano, M., Sato, S. & Fujita, M. Endohedral peptide lining of a self-assembled molecular sphere to generate chirality-confined hollows. J. Am. Chem. Soc. 129, 10652–10653 (2007).

    Article  CAS  Google Scholar 

  25. Van Bommel, K. J. C., Friggeri, A. & Shinkai, S. Organic templates for the generation of inorganic materials. Angew. Chem. Int. Ed. 42, 980–999 (2003).

    Article  CAS  Google Scholar 

  26. Yamaguchi, K. Cold-spray ionization mass spectrometry: principle and applications. J. Mass Spectrom. 38, 473–490 (2003).

    Article  CAS  Google Scholar 

  27. Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–66 (1968).

    Article  Google Scholar 

Download references


We thank M. Kawano for supporting the synchrotron X-ray crystallographic analysis at Photon Factory-Advanced Ring for Pulse X-rays of the High Energy Accelerator Research Organization. This work was supported by the Core Research for Evolution Science and Technology project of the Japan Science and Technology Agency, for which M.F. is the principal investigator, and also in part by the Global COE Program (Chemistry Innovation through Cooperation of Science and Engineering), Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. A part of this work was conducted in the Center for Nano Lithography & Analysis, The University of Tokyo, supported by MEXT, Japan. This work was approved by the Photon Factory Program Advisory Committee.

Author information

Authors and Affiliations



M.F. designed and directed the project and wrote the manuscript. K.S. performed the experimental work and wrote the manuscript. S.S. contributed to the data analysis.

Corresponding author

Correspondence to Makoto Fujita.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6462 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Suzuki, K., Sato, S. & Fujita, M. Template synthesis of precisely monodisperse silica nanoparticles within self-assembled organometallic spheres. Nature Chem 2, 25–29 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing