Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Soft porous crystals

Abstract

The field of host–guest complexation is intensely attractive from diverse perspectives, including materials science, chemistry and biology. The uptake and encapsulation of guest species by host frameworks are being investigated for a wide variety of purposes, including separation and storage using zeolites, and recognition and sensing by enzymes in solution. Here we focus on the concept of the cooperative integration of 'softness' and 'regularity'. Recent developments on porous coordination polymers (or metal–organic frameworks) have provided the inherent properties that combine these features. Such soft porous crystals exhibit dynamic frameworks that are able to respond to external stimuli such as light, electric fields or the presence of particular species, but they are also crystalline and can change their channels reversibly while retaining high regularity. We discuss the relationship between the structures and properties of these materials in view of their practical applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Soft porous crystal as a new class of adsorptive solid materials.
Figure 2: Reorientation of porous networks for guest separation.
Figure 3: Theoretical approach for hysteretic sorption by a gate-opening process of the interpenetrating system.
Figure 4: Unique gas incorporation behaviour triggered by rearrangements of local structure.
Figure 5: Dynamic motions of porous coordination polymers.
Figure 6: Flexible pore spaces for polymerization and magnetic switching.
Figure 7: Perspectives in functions of soft porous crystals with various properties.

References

  1. Yaghi, O. M., Li, H. L., Davis, C., Richardson, D. & Groy, T. L. Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids. Acc. Chem. Res. 31, 474–484 (1998).

    CAS  Article  Google Scholar 

  2. Kitagawa, S. & Kondo, M. Functional micropore chemistry of crystalline metal complex-assembled compounds. Bull. Chem. Soc. Jpn 71, 1739–1753 (1998).

    CAS  Article  Google Scholar 

  3. Blake, A. J. et al. Inorganic crystal engineering using self-assembly of tailored building-blocks. Coord. Chem. Rev. 183, 117–138 (1999).

    CAS  Article  Google Scholar 

  4. Moulton, B. & Zaworotko, M. J. From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids. Chem. Rev. 101, 1629–1658 (2001).

    CAS  PubMed  Article  Google Scholar 

  5. James, S. L. Metal-organic frameworks. Chem. Soc. Rev. 32, 276–288 (2003).

    CAS  PubMed  Article  Google Scholar 

  6. Janiak, C. Engineering coordination polymers towards applications. Dalton Trans. 2781–2804 (2003).

  7. Papaefstathiou, G. S. & MacGillivray, L. R. Inverted metal-organic frameworks: solid-state hosts with modular functionality. Coord. Chem. Rev. 246, 169–184 (2003).

    CAS  Article  Google Scholar 

  8. Côté, A. P. & Shimizu, G. K. H. The supramolecular chemistry of the sulfonate group in extended solids. Coord. Chem. Rev. 245, 49–64 (2003).

    Article  CAS  Google Scholar 

  9. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    CAS  Article  Google Scholar 

  10. Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. Metal carboxylates with open architectures. Angew. Chem. Int. Ed. 43, 1466–1496 (2004).

    CAS  Article  Google Scholar 

  11. Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. Design, chirality, and flexibility in nanoporous molecule-based materials. Acc. Chem. Res. 38, 273–282 (2005).

    CAS  PubMed  Article  Google Scholar 

  12. Müller, U. et al. Metal-organic frameworks - prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006).

    Article  Google Scholar 

  13. Maspoch, D., Ruiz-Molina, D. & Veciana, J. Old materials with new tricks: multifunctional open-framework materials. Chem. Soc. Rev. 36, 770–818 (2007).

    CAS  PubMed  Article  Google Scholar 

  14. Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    PubMed  Article  Google Scholar 

  15. Morris, R. E. & Wheatley, P. S. Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 47, 4966–4981 (2008).

    CAS  Article  Google Scholar 

  16. Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 38, 1330–1352 (2009).

    CAS  PubMed  Article  Google Scholar 

  17. Tanaka, T., Tasaki, T. & Aoyama, Y. Acridinylresorcinol as a self-complementary building block of robust hydrogen-bonded 2D nets with coordinative saturation. Preservation of crystal structures upon guest alteration, guest removal, and host modification. J. Am. Chem. Soc. 124, 12453–12462 (2002).

    CAS  PubMed  Article  Google Scholar 

  18. Atwood, J. L., Barbour, L. J. & Jerga, A. Storage of methane and freon by interstitial van der Waals confinement. Science 296, 2367–2369 (2002).

    CAS  PubMed  Article  Google Scholar 

  19. Soldatov, D. V. et al. alpha- and beta-bis(1, 1, 1-trifluoro-5,5-dimethyl-5-methoxyacetylacetonato)copper(II): Transforming the dense polymorph into a versatile new microporous framework. J. Am. Chem. Soc. 121, 4179–4188 (1999).

    CAS  Article  Google Scholar 

  20. Alberti, G., Murcia-Mascaros, S. & Vivani, R. Pillared derivatives of gamma-zirconium phosphate containing nonrigid alkyl chain pillars. J. Am. Chem. Soc. 120, 9291–9295 (1998).

    CAS  Article  Google Scholar 

  21. Clearfield, A. & Wang, Z. K. Organically pillared microporous zirconium phosphonates. Dalton Trans. 2937–2947 (2002).

  22. Lee, Y. et al. Phase transition of zeolite RHO at high-pressure. J. Am. Chem. Soc. 123, 8418–8419 (2001).

    CAS  PubMed  Article  Google Scholar 

  23. Fletcher, A. J., Thomas, K. M. & Rosseinsky, M. J. Flexibility in metal-organic framework materials: Impact on sorption properties. J. Solid State Chem. 178, 2491–2510 (2005).

    CAS  Article  Google Scholar 

  24. Uemura, K., Matsuda, R. & Kitagawa, S. Flexible microporous coordination polymers. J. Solid State Chem. 178, 2420–2429 (2005).

    CAS  Article  Google Scholar 

  25. Sing, K. S. W. et al. reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984). Pure Appl. Chem. 57, 603–619 (1985).

    CAS  Article  Google Scholar 

  26. Batten, S. R. & Robson, R. Interpenetrating nets: Ordered, periodic entanglement. Angew. Chem. Int. Ed. 37, 1460–1494 (1998).

    Article  Google Scholar 

  27. Li, D. & Kaneko, K. Hydrogen bond-regulated microporous nature of copper complex-assembled microcrystals. Chem. Phys. Lett. 335, 50–56 (2001).

    CAS  Article  Google Scholar 

  28. Kitaura, R., Seki, K., Akiyama, G. & Kitagawa, S. Porous coordination-polymer crystals with gated channels specific for supercritical gases. Angew. Chem. Int. Ed. 42, 428–430 (2003).

    CAS  Article  Google Scholar 

  29. Coudert, F. X., Jeffroy, M., Fuchs, A. H., Boutin, A. & Mellot-Draznieks, C. Thermodynamics of guest-induced structural transitions in hybrid organic-inorganic frameworks. J. Am. Chem. Soc. 130, 14294–14302 (2008).

    CAS  PubMed  Article  Google Scholar 

  30. Horike, S., Tanaka, D., Nakagawa, K. & Kitagawa, S. Selective guest sorption in an interdigitated porous framework with hydrophobic pore surfaces. Chem. Commun. 3395–3397 (2007).

  31. Tanaka, D. et al. Kinetic gate-opening process in a flexible porous coordination polymer. Angew. Chem. Int. Ed. 47, 3914–3918 (2008).

    CAS  Article  Google Scholar 

  32. Chen, B. L. et al. A microporous metal-organic framework for gas-chromatographic separation of alkanes. Angew. Chem. Int. Ed. 45, 1390–1393 (2006).

    CAS  Article  Google Scholar 

  33. Maji, T. K., Matsuda, R. & Kitagawa, S. A flexible interpenetrating coordination framework with a bimodal porous functionality. Nature Mater. 6, 142–148 (2007).

    CAS  Article  Google Scholar 

  34. Amirjalayer, S., Tafipolsky, M. & Schmid, R. Molecular dynamics simulation of benzene diffusion in MOF-5: Importance of lattice dynamics. Angew. Chem. Int. Ed. 46, 463–466 (2007).

    CAS  Article  Google Scholar 

  35. Han, S. S., Deng, W. Q. & Goddard, W. A. Improved designs of metal-organic frameworks for hydrogen storage. Angew. Chem. Int. Ed. 46, 6289–6292 (2007).

    CAS  Article  Google Scholar 

  36. Ryan, P., Broadbelt, L. J. & Snurr, R. Q. Is catenation beneficial for hydrogen storage in metal-organic frameworks? Chem. Commun. 4132–4134 (2008).

  37. Watanabe, S., Sugiyama, H., Adachi, H., Tanaka, H. & Miyahara, T. M. Free energy analysis for adsorption-induced lattice transition of flexible coordination framework. J. Chem. Phys. 130, 164707 (2009).

    PubMed  Article  CAS  Google Scholar 

  38. Seki, K. Dynamic channels of a porous coordination polymer responding to external stimuli. Phys. Chem. Chem. Phys. 4, 1968–1971 (2002).

    CAS  Article  Google Scholar 

  39. Biradha, K. & Fujita, M. A springlike 3D-coordination network that shrinks or swells in a crystal-to-crystal manner upon guest removal or readsorption. Angew. Chem. Int. Ed. 41, 3392–3395 (2002).

    CAS  Article  Google Scholar 

  40. Mulfort, K. L. & Hupp, J. T. Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. J. Am. Chem. Soc. 129, 9604–9605 (2007).

    CAS  PubMed  Article  Google Scholar 

  41. Atkins, P., Overton, T., Rourke, J. & Weller, M. Inorganic Chemistry 4th edn (Oxford Univ. Press, 2006).

    Google Scholar 

  42. Serre, C. et al. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH){O2C-C6H4-CO2}{HO2C-C6H4 -CO2H}xH2Oy . J. Am. Chem. Soc. 124, 13519–13526 (2002).

    CAS  PubMed  Article  Google Scholar 

  43. Llewellyn, P. L., Bourrelly, S., Serre, C., Filinchuk, Y. & Férey, G. How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53. Angew. Chem. Int. Ed. 45, 7751–7754 (2006).

    CAS  Article  Google Scholar 

  44. Alaerts, L. et al. Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47. Angew. Chem. Int. Ed. 46, 4293–4297 (2007).

    CAS  Article  Google Scholar 

  45. Horcajada, P. et al. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774–6780 (2008).

    CAS  PubMed  Article  Google Scholar 

  46. Choi, H., Dincă, M. & Long, J. R. Broadly hysteretic H2 adsorption in the microporous metal-organic framework Co(1,4-benzenedipyrazolate). J. Am. Chem. Soc. 130, 7848–7850 (2008).

    CAS  PubMed  Article  Google Scholar 

  47. Matsuda, R. et al. Guest shape-responsive fitting of porous coordination polymer with shrinkable framework. J. Am. Chem. Soc. 126, 14063–14070 (2004).

    CAS  PubMed  Article  Google Scholar 

  48. Yang, S. H. et al. Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal-organic framework. Nature Chem. 1, 487–493 (2009).

    CAS  Article  Google Scholar 

  49. Telfer, S. G., Sato, T., Kuroda, R., Lefebvre, J. & Leznoff, D. B. Dinuclear complexes of chiral tetradentate pyridylimine ligands: Diastereoselectivity, positive cooperativity, anion selectivity, ligand self-sorting based on chirality, and magnetism. Inorg. Chem. 43, 421–429 (2004).

    CAS  PubMed  Article  Google Scholar 

  50. Uemura, T. et al. Conformation and molecular dynamics of single polystyrene chain confined in coordination nanospace. J. Am. Chem. Soc. 130, 6781–6788 (2008).

    CAS  PubMed  Article  Google Scholar 

  51. Gonzalez, J., Devi, R. N., Tunstall, D. P., Cox, P. A. & Wright, P. A. Deuterium NMR studies of framework and guest mobility in the metal-organic framework compound MOF-5, Zn4O(O2CC6H4CO2)3 . Micropor. Mesopor. Mater. 84, 97–104 (2005).

    CAS  Article  Google Scholar 

  52. Horike, S. et al. Dynamic motion of building blocks in porous coordination polymers. Angew. Chem. Int. Ed. 45, 7226–7230 (2006).

    CAS  Article  Google Scholar 

  53. Gould, S. L., Tranchemontagne, D., Yaghi, O. M. & Garcia-Garibay, M. A. Amphidynamic character of crystalline MOF-5: Rotational dynamics of terephthalate phenylenes in a free-volume, sterically unhindered environment. J. Am. Chem. Soc. 130, 3246–3247 (2008).

    CAS  PubMed  Article  Google Scholar 

  54. Winston, E. B. et al. Dipolar molecular rotors in the metal-organic framework crystal IRMOF-2. Phys. Chem. Chem. Phys. 10, 5188–5191 (2008).

    CAS  PubMed  Article  Google Scholar 

  55. Zhang, J. P. & Chen, X. M. Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework. J. Am. Chem. Soc. 130, 6010–6017 (2008).

    CAS  PubMed  Article  Google Scholar 

  56. Tafipolsky, M., Amirjalayer, S. & Schmid, R. Ab initio parametrized MM3 force field for the metal-organic framework MOF-5. J. Comput. Chem. 28, 1169–1176 (2007).

    CAS  PubMed  Article  Google Scholar 

  57. Dybtsev, D. N., Chun, H. & Kim, K. Rigid and flexible: A highly porous metal-organic framework with unusual guest-dependent dynamic behavior. Angew. Chem. Int. Ed. 43, 5033–5036 (2004).

    CAS  Article  Google Scholar 

  58. Uemura, T., Hiramatsu, D., Kubota, Y., Takata, M. & Kitagawa, S. Topotactic linear radical polymerization of divinylbenzenes in porous coordination polymers. Angew. Chem. Int. Ed. 46, 4987–4990 (2007).

    CAS  Article  Google Scholar 

  59. Choi, H. J. & Suh, M. P. Dynamic and redox active pillared bilayer open framework: Single-crystal-to-single-crystal transformations upon guest removal, guest exchange, and framework oxidation. J. Am. Chem. Soc. 126, 15844–15851 (2004).

    CAS  PubMed  Article  Google Scholar 

  60. Suh, M. P., Moon, H. R., Lee, E. Y. & Jang, S. Y. A redox-active two-dimensional coordination polymer: Preparation of silver and gold nanoparticles and crystal dynamics on guest removal. J. Am. Chem. Soc. 128, 4710–4718 (2006).

    CAS  PubMed  Article  Google Scholar 

  61. Shimomura, S., Matsuda, R., Tsujino, T., Kawamura, T. & Kitagawa, S. TCNQ dianion-based coordination polymer whose open framework shows charge-transfer type guest inclusion. J. Am. Chem. Soc. 128, 16416–16417 (2006).

    CAS  PubMed  Article  Google Scholar 

  62. Férey, G. et al. Mixed-valence Li/Fe-based metal-organic frameworks with both reversible redox and sorption properties. Angew. Chem. Int. Ed. 46, 3259–3263 (2007).

    Article  CAS  Google Scholar 

  63. Combelles, C. & Doublet, M. L. Structural, magnetic and redox properties of a new cathode material for Li-ion batteries: the iron-based metal organic framework. Ionics 14, 279–283 (2008).

    CAS  Article  Google Scholar 

  64. Lu, Y. et al. A cobalt(II)-containing metal-organic framework showing catalytic activity in oxidation reactions. Z. Anorg. Allg. Chem. 634, 2411–2417 (2008).

    CAS  Article  Google Scholar 

  65. Ohba, M., Yamada, M., Usuki, N. & Okawa, H. New 3-D bimetallic magnetic compounds, [Ni(dipn)]3[M(CN)6]27H2O (M-III=Fe, Co; dipn=N, N-di(3-aminopropyl)amine). Mol. Cryst. Liq. Cryst. 379, 241–246 (2002).

    CAS  Article  Google Scholar 

  66. Yanai, N. et al. fabrication of two-dimensional polymer arrays: template synthesis of polypyrrole between redox-active coordination nanoslits. Angew. Chem. Int. Ed. 47, 9883–9886 (2008).

    CAS  Article  Google Scholar 

  67. Halder, G. J., Kepert, C. J., Moubaraki, B., Murray, K. S. & Cashion, J. D. Guest-dependent spin crossover in a nanoporous molecular framework material. Science 298, 1762–1765 (2002).

    CAS  PubMed  Article  Google Scholar 

  68. Maspoch, D. et al. A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties. Nature Mater. 2, 190–195 (2003).

    CAS  Article  Google Scholar 

  69. Kurmoo, M., Kumagai, H., Hughes, S. M. & Kepert, C. J. Reversible guest exchange and ferrimagnetism (TC = 60.5 K) in a porous cobalt(II)-hydroxide layer structure pillared with trans-1, 4-cyclohexanedicarboxylate. Inorg. Chem. 42, 6709–6722 (2003).

    CAS  PubMed  Article  Google Scholar 

  70. Cheng, X. N., Zhang, W. X. & Chen, X. M. Single crystal-to-single crystal transformation from ferromagnetic discrete molecules to a spin-canting antiferromagnetic layer. J. Am. Chem. Soc. 129, 15738–15739 (2007).

    CAS  PubMed  Article  Google Scholar 

  71. Niel, V., Martinez-Agudo, J. M., Munoz, M. C., Gaspar, A. B. & Real, J. A. Cooperative spin crossover behavior in cyanide-bridged Fe(II)-M(II) bimetallic 3D Hofmann-like networks (M = Ni, Pd, and Pt). Inorg. Chem. 40, 3838–3839 (2001).

    CAS  PubMed  Article  Google Scholar 

  72. Ohba, M. et al. Bidirectional chemo-switching of spin state in a microporous framework. Angew. Chem. Int. Ed. 48, 4767–4771 (2009).

    CAS  Article  Google Scholar 

  73. Southon, P. D. et al. Dynamic interplay between spin-crossover and host-guest function in a nanoporous metal-organic framework material. J. Am. Chem. Soc. 131, 10998–11009 (2009).

    CAS  PubMed  Article  Google Scholar 

  74. Cobo, S. et al. Single-laser-shot-induced complete bidirectional spin transition at room temperature in single crystals of (Fe-II(pyrazine)(Pt(CN)4)). J. Am. Chem. Soc. 130, 9019–9024 (2008).

    CAS  PubMed  Article  Google Scholar 

  75. McKinlay, A. C. et al. Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in porous metal organic frameworks. J. Am. Chem. Soc. 130, 10440–10444 (2008).

    CAS  PubMed  Article  Google Scholar 

  76. Kubota, Y. et al. Metastable sorption state of a metal-organic porous material determined by in situ synchrotron powder diffraction. Angew. Chem. Int. Ed. 45, 4932–4936 (2006).

    CAS  Article  Google Scholar 

  77. Jain, P., Dalal, N. S., Toby, B. H., Kroto, H. W. & Cheetham, A. K. Order-disorder antiferroelectric phase transition in a hybrid inorganic-organic framework with the perovskite architecture. J. Am. Chem. Soc. 130, 10450–10451 (2008).

    CAS  PubMed  Article  Google Scholar 

  78. Wang, Z. Q. & Cohen, S. M. Tandem modification of metal-organic frameworks by a postsynthetic approach. Angew. Chem. Int. Ed. 47, 4699–4702 (2008).

    CAS  Article  Google Scholar 

  79. Kitagawa, S. Gas in a straitjacket. Nature 441, 584–585 (2006).

    CAS  PubMed  Article  Google Scholar 

  80. Stallmach, F. et al. NMR studies on the diffusion of hydrocarbons on the metal-organic framework material MOF-5. Angew. Chem. Int. Ed. 45, 2123–2126 (2006).

    CAS  Article  Google Scholar 

  81. Huang, B. L. et al. Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement. Int. J. Heat Mass Transfer 50, 405–411 (2007).

    CAS  Article  Google Scholar 

  82. Navarro, J. A. R. et al. Guest-induced modification of a magnetically active ultramicroporous, gismondine-like, copper(II) coordination network. J. Am. Chem. Soc. 130, 3978–3984 (2008).

    CAS  PubMed  Article  Google Scholar 

  83. Shimomura, S., Horike, S., Matsuda, R. & Kitagawa, S. Guest-specific function of a flexible undulating channel in a 7, 7, 8, 8-tetracyano-p-quinodimethane dimer-based porous coordination polymer. J. Am. Chem. Soc. 129, 10990–10991 (2007).

    CAS  PubMed  Article  Google Scholar 

  84. Cho, W., Lee, H. J. & Oh, M. Growth-controlled formation of porous coordination polymer particles. J. Am. Chem. Soc. 130, 16943–16946 (2008).

    CAS  PubMed  Article  Google Scholar 

  85. Tsuruoka, T. et al. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew. Chem. Int. Ed. 48, 4739–4743 (2009).

    CAS  Article  Google Scholar 

  86. Lin, W. B., Rieter, W. J. & Taylor, K. M. L. Modular synthesis of functional nanoscale coordination polymers. Angew. Chem. Int. Ed. 48, 650–658 (2009).

    CAS  Article  Google Scholar 

  87. Shekhah, C. et al. Step-by-step route for the synthesis of metal-organic frameworks. J. Am. Chem. Soc. 129, 15118–15119 (2007).

    CAS  PubMed  Article  Google Scholar 

  88. Scherb, C., Schödel, A. & Bein, T. Directing the structure of metal-organic frameworks by oriented surface growth on an organic monolayer. Angew. Chem. Int. Ed. 47, 5777–5779 (2008).

    CAS  Article  Google Scholar 

  89. Yoo, Y. & Jeong, H. K. Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition. Chem. Commun. 2441–2443 (2008).

  90. Furukawa, S. et al. Heterogeneously hybridized porous coordination polymer crystals: fabrication of heterometallic core–shell single crystals with an in-plane rotational epitaxial relationship. Angew. Chem. Int. Ed. 48, 1766–1770 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Japan Science and Technology Agency (JST), ERATO Kitagawa Integrated Pores Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Kitagawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nature Chem 1, 695–704 (2009). https://doi.org/10.1038/nchem.444

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.444

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing