Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cooperative molecular dynamics in surface reactions

Abstract

The controlled imprinting of surfaces with specified patterns is important in the development of nanoscale devices. Previously, such patterns were created using self-assembled physisorbed adsorbate molecules that can be stabilized on the surface by subsequent chemical bonding. Here we show a first step towards use of the bonding within a surface to propagate reactions for patterning, namely the cooperative reaction of adjacent silicon atoms. We exploit the double-bonded silicon dimer pairs present on the surface of Si(100)-2×1 and show that the halogenation of one silicon atom (induced by electrons or heat) results in cooperative halogenation of the neighbouring silicon atom with unit efficiency. The reactants used were two 1-halopentane molecules physisorbed over a pair of silicon atoms. This cooperative pair of halogenation reactions was shown by ab initio calculation to be sequential on a timescale of femtoseconds.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Experiment and theory for the cooperative reaction of a pair of fluoropentane molecules on a silicon surface.
Figure 2: Determining the identity of the reaction product atoms and the characteristics of the cooperative reaction.
Figure 3: Experimental results for the thermal cooperative reactions (360 K) of two pairs of fluoropentane molecules.
Figure 4: Calculated MEP for the cooperative bifluorination.

References

  1. Braunschweig, A. B., Huo, F. & Mirkin, C. A. Molecular printing. Nature Chem. 1, 353–358 (2009).

    Article  CAS  Google Scholar 

  2. McNab, I. R. & Polanyi, J. C. Patterned atomic reaction at surfaces. Chem. Rev. 106, 4321–4354 (2006).

    Article  CAS  Google Scholar 

  3. Harikumar, K. R. et al. Dipole-directed assembly of lines of 1,5-dichloropentane on silicon substrates by displacement of surface charge. Nature Nanotech. 3, 222–228 (2008).

    Article  CAS  Google Scholar 

  4. Lopinski, G. P., Wayner, D. D. M. & Wolkow, R. A. Self-directed growth of molecular nanostructures on silicon. Nature 416, 48–51 (2000).

    Article  Google Scholar 

  5. Maksymovych, P., Sorescu, D. C., Jordan, K. D. & Yates J. T. Collective reactivity of molecular chains self-assembled on a surface. Science 322, 1664–1667 (2008).

    Article  CAS  Google Scholar 

  6. Hass, K. C., Schneider, W. F., Curioni, A. & Andreoni, W. The chemistry of water on alumina surfaces: reaction dynamics from first principles. Science 282, 265–268 (1998).

    Article  CAS  Google Scholar 

  7. Qin, F., Magtoto, N. P. & Kelber, J. A. Moisture-induced instability at the Al2O3/Ni3Al(110) interface: interfacial chemistry. Mater. High Temp. 21, 193–204 (2004).

    Article  CAS  Google Scholar 

  8. Lee, H. S., An, K.-S., Kim, Y. & Choi, C. H., Surface SN2 reaction by H2O on chlorinated Si(100)-2×1 surface. J. Phys. Chem. B 109, 10909–10914 (2005).

    Article  CAS  Google Scholar 

  9. Jarvis, E. A. & Chaka, A. M. Oxidation mechanism and ferryl domain formation on the α-Fe2O3 (0001) surface. Surf. Sci. 601, 1909–1914 (2007).

    Article  CAS  Google Scholar 

  10. Somorjai, G. A. Introduction to Surface Chemistry and Catalysis 500 (Wiley, 1994).

    Google Scholar 

  11. Dobrin, S. et al. Molecular dynamics of haloalkanes corral formation and surface halogenation at Si(111)-7×7. J. Chem. Phys. 125, 133407 (2006).

    Article  CAS  Google Scholar 

  12. Dobrin, S. et al. Self-assembled molecular corrals on a semiconductor surface. Surf. Sci. 600, L43–L47 (2006).

    Article  CAS  Google Scholar 

  13. Oura, K., Lifshits, V. G., Saranin, A. A., Zotov, A. V. & Katayama, M. Surface Science, an Introduction 181 (Springer, 2003).

    Google Scholar 

  14. Bronikowski, M. J., Wang, Y., McEllistrem, M. T., Chen, D. & Hamers, R. J. Adsorption and dissociation of disilane on Si(001) studied by STM. Surf. Sci. 298, 50–62 (1993).

    Article  CAS  Google Scholar 

  15. Guo, H., Ji, W., Polanyi, J. C. & Yang, J. (S. Y.). Molecular dynamics of localized reaction, experiment and theory: methyl bromide on Si(111)-7×7. ACS Nano, 2, 699–706 (2008).

    Article  CAS  Google Scholar 

  16. Hahn, J. R. & Ho, W. Orbital specific chemistry: controlling the pathway in single-molecule dissociation. J. Chem. Phys. 122, 244704 (2005).

    Article  CAS  Google Scholar 

  17. Stroscio, J. A. & Celotta, R. J. Controlling the dynamics of a single atom in lateral atom manipulation. Science 306, 242–247 (2004).

    Article  CAS  Google Scholar 

  18. Quaade, U. J., Stokbro, K., Thirstrup, C. & Grey, F. Mechanism of single atom switch on silicon. Surf. Sci. 415, L1037–L1045 (1998).

    Article  CAS  Google Scholar 

  19. Nakayama, K. S. et al. Electronic structure of Si(001)-c(4×2) analyzed by scanning tunneling spectroscopy and ab initio simulations. Phys. Rev. B 73, 035330 (2006).

    Article  Google Scholar 

  20. Hata, K., Shibata, Y. & Shigekawa, G. Fine electronic structure of the buckled dimers of Si(100) elucidated by atomically resolved scanning tunneling spectroscopy and bias-dependent imaging. Phys. Rev. B 64, 235310 (2001).

    Article  Google Scholar 

  21. Lastapis, M. et al. Picometer-scale electronic control of molecular dynamics inside a single molecule. Science 308, 1000–1003 (2005).

    Article  CAS  Google Scholar 

  22. Yoder, N. L. et al. Quantifying desorption of saturated hydrocarbons from silicon with quantum calculations and scanning tunneling microscopy. Phys. Rev. Lett. 97, 187601 (2006).

    Article  CAS  Google Scholar 

  23. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000).

    Article  CAS  Google Scholar 

  24. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  25. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  26. Dobrin, S., Harikumar, K. R. & Polanyi, J. C. An STM study of the localized atomic reaction of 1,2- and 1,4-dibromobenzene at Si(111)-7×7. Surf. Sci. 561, 11–24 (2004).

    Article  CAS  Google Scholar 

  27. Bartmess, J. E. & Georgiadis, R. M. Empirical methods for determination of ionization gauge relative sensitivities for different gases. Vacuum 33, 149–153 (1983).

    Article  CAS  Google Scholar 

  28. Feenstra, R. M. & Stroscio, J. A. in Scanning Tunneling Microscopy (eds Kaiser, W. J. & Stroscio, J. A.) 96 (Academic Press, 1993).

    Google Scholar 

  29. Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982 (1996).

    Article  CAS  Google Scholar 

  30. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  31. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Erratum: ‘Hybrid functionals based on a screened Coulomb potential’. J. Chem. Phys. 124, 2 19906 (2006).

    Google Scholar 

  32. Paier, J. et al. Screened hybrid density functional applied to solids. J. Chem. Phys. 124, 154709 (2006).

    Article  CAS  Google Scholar 

  33. Paier, J. et al. Erratum: ‘Screened hybrid density functional applied to solids’. J. Chem. Phys. 125, 249901 (2006).

    Article  Google Scholar 

  34. Williams, H., Hofer, W. A., Cavar, E., Mikkelsen, A. & Lundgren, E. Density functional theory with hybrid functionals applied to defects in GaAs surfaces: effect of doping. Phys Rev B 78, 205309 (2008).

    Article  Google Scholar 

  35. Hofer, W. A. & Garcia-Lekue, A. Differential tunneling spectroscopy simulations: imaging surface states. Phys. Rev. B 71, 085401 (2005).

    Article  Google Scholar 

  36. Palotas, K. & Hofer, W. A., Multiple scattering in a vacuum barrier obtained from real-space wavefunctions. J. Phys. Condens. Matter, 17, 2705–2713 (2005).

    Article  CAS  Google Scholar 

  37. Hofer, W. A., Fisher, A. J., Lopinski, G. P. & Wolkow, R. A. Adsorption of benzene on Si(100)-(2×1): adsorption energies and STM image analysis by ab initio methods. Phys. Rev. B 63, 085314 (2001).

    Article  Google Scholar 

  38. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Molec. Graph., 14, 33 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.C.P. thanks the Natural Sciences and Engineering Research Council of Canada, Photonics Research Ontario (Ontario Centre of Excellence), Canadian Institute for Photonic Innovation and Xerox Research Centre Canada for their support of this work. H.L. is supported by the Engineering and Physical Sciences Research Council. W.A.H. thanks the Royal Society of London for support. J.C.P. and W.A.H. thank the Canadian Institute for Advanced Research for support. We thank Amir Zabet for permission to use Supplementary Fig. S3.

Author information

Authors and Affiliations

Authors

Contributions

K.R.H., L.L., I.R.McN and J.C.P. were all involved in the concept and design of experiments and analysis of the data. H.L. and W.A.H. performed the DFT calculations and image simulations. All authors participated in interpreting the data and preparation of the manuscript.

Corresponding author

Correspondence to John C. Polanyi.

Supplementary information

Supplementary information

Supplementary information (PDF 492 kb)

Supplementary information

Supplementary Movie S1 (MOV 129 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harikumar, K., Leung, L., McNab, I. et al. Cooperative molecular dynamics in surface reactions. Nature Chem 1, 716–721 (2009). https://doi.org/10.1038/nchem.440

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.440

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing