Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of active Zr–WOx clusters on a ZrO2 support for solid acid catalysts

Abstract

Tungstated zirconia is a robust solid acid catalyst for light alkane (C4–C8) isomerization. Several structural models for catalytically active sites have been proposed, but the topic remains controversial, partly because of the absence of direct structural imaging information on the various supported WOx species. High-angle annular dark-field imaging of WO3/ZrO2 catalysts in an aberration-corrected analytical electron microscope allows, for the first time, direct imaging of the various species present. Comparison of the relative distribution of these WOx species in materials showing low and high catalytic activities has allowed the deduction of the likely identity of the catalytic active site—namely, subnanometre Zr–WOx clusters. This information has subsequently been used in the design of new catalysts, in which the activity of a poor catalyst has been increased by two orders of magnitude using a synthesis procedure that deliberately increases the number density of catalytically relevant active species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron microscopy characterization of a low-activity WZrOH catalyst.
Figure 2: Electron microscopy characterization of a high-activity WZrOH catalyst.
Figure 4: Electron microscopy characterization of an inactive model WZrO2 catalyst.
Figure 5: STEM–HAADF imaging of post-impregnated catalysts.
Figure 3: STEM–XEDS analysis of a highly active WZrOH catalyst.

Similar content being viewed by others

References

  1. Hino, M. & Arata, K. Synthesis of solid superacid of tungsten oxide supported on zirconia and its catalytic action for reactions of butane and pentane. J. Chem. Soc. Chem. Commun. 1259–1260 (1988).

  2. Ono, Y. A survey of the mechanism in catalytic isomerization of alkanes. Catal. Today 81, 3–16 (2003).

    Article  CAS  Google Scholar 

  3. Santiesteban, J. G., Vartuli, J. C., Han, S., Bastian, R. D. & Chang, C. D. Influence of the preparative method on the activity of highly acidic WOx/ZrO2 and the relative acid activity compared with zeolites. J. Catal. 168, 431–441 (1997).

    Article  CAS  Google Scholar 

  4. Scheithauer, M., Grasselli, R. K. & Knözinger, H. Genesis and structure of WOx/ZrO2 solid acid catalysts. Langmuir 14, 3019–3029 (1998).

    Article  CAS  Google Scholar 

  5. Barton, D. G., Soled, S. L., Meitzner, G. D., Fuentes, G. A. & Iglesia, E. Structural and catalytic characterization of solid acids based on zirconia modified by tungsten oxide. J. Catal. 181, 57–72 (1999).

    Article  CAS  Google Scholar 

  6. Barton, D. G., Shtein, M., Wilson, R. D., Soled, S. L. & Iglesia, E. Structure and electronic properties of solid acids based on tungsten oxide nanostructures. J. Phys. Chem. B 103, 630–640 (1999).

    Article  CAS  Google Scholar 

  7. Baertsch, C. D., Soled, S. L. & Iglesia, E. Isotopic and chemical titration of acid sites in tungsten oxide domains supported on zirconia. J. Phys. Chem. B 105, 1320–1330 (2001).

    Article  CAS  Google Scholar 

  8. Baertsch, C. D., Komala, K. T., Chua, Y. H. & Iglesia, E. Genesis of Brønsted acid sites during dehydration of 2-butanol on tungsten oxide catalysts. J. Catal. 205, 44–57 (2002).

    Article  CAS  Google Scholar 

  9. Macht, J. et al. Support effects on Brønsted acid site densities and alcohol dehydration turnover rates on tungsten oxide domains. J. Catal. 227, 479–491 (2004).

    Article  CAS  Google Scholar 

  10. Wachs, I. E., Kim, T. & Ross, E. I. Catalysis science of the solid acidity of model supported tungsten oxide catalysts. Catal. Today 116, 162–168 (2006).

    Article  CAS  Google Scholar 

  11. Kim, T., Burrows, A., Kiely, C. J. & Wachs, I. E. Molecular/electronic structure–surface acidity relationships of model-supported tungsten oxide catalysts. J. Catal. 246, 370–381 (2007).

    Article  CAS  Google Scholar 

  12. Ross-Medgaarden, E. I. & Wachs, I. E. Structural determination of bulk and surface tungsten oxides with UV–vis diffuse reflectance spectroscopy and Raman spectroscopy. J. Phys. Chem. C 111, 15089–15099 (2007).

    Article  CAS  Google Scholar 

  13. Ross-Medgaarden, E. I. et al. New insights into the nature of the acidic catalytic active sites present in ZrO2-supported tungsten oxide catalysts. J. Catal. 256, 108–125 (2008).

    Article  CAS  Google Scholar 

  14. Scheithauer, M. et al. Characterization of WOx/ZrO2 by vibrational spectroscopy and n-pentane isomerization catalysis. J. Catal. 180, 1–13 (1998).

    Article  CAS  Google Scholar 

  15. Badlani, M. & Wachs, I. E. Methanol: a ‘smart’ chemical probe molecule. Catal. Lett. 75, 137–149 (2001).

    Article  CAS  Google Scholar 

  16. Barton, D. G., Soled, S. L. & Iglesia, E. Solid acid catalysts based on supported tungsten oxides. Top. Catal. 6, 87–99 (1998).

    Article  CAS  Google Scholar 

  17. Vartuli, J. C. et al. Characterization of the acid properties of tungsten/zirconia catalysts using adsorption microcalorimetry and n-pentane isomerization activity. J. Catal. 187, 131–138 (1999).

    Article  CAS  Google Scholar 

  18. Calabro, D. C., Vartuli, J. C. & Santiesteban, J. G. The characterization of tungsten-oxide-modified zirconia supports for dual functional catalysis. Top. Catal. 18, 231–242 (2002).

    Article  CAS  Google Scholar 

  19. Nellist, P. D. & Pennycook, S. J. Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274, 413–415 (1996).

    Article  CAS  Google Scholar 

  20. Batson, P. E., Dellby, N. & Krivanek, O. L. Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002).

    Article  CAS  Google Scholar 

  21. Watanabe, M. et al. The aberration corrected JEOL JEM-2200FS FEG-STEM/TEM fitted with an Ω electron energy-filter: performance characterization and selected applications. JEOL News 41, 2–7 (2006).

    Google Scholar 

  22. Nellist, P. D. et al. Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741 (2004).

    Article  CAS  Google Scholar 

  23. Wang, S. et al. Dopants adsorbed as single atoms prevent degradation of catalysts. Nature Mater. 3, 143–146 (2004).

    Article  CAS  Google Scholar 

  24. Varela, M. et al. Materials characterization in the aberration-corrected scanning transmission electron microscope. Annu. Rev. Mater. Res. 35, 539–569 (2005).

    Article  CAS  Google Scholar 

  25. Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P. & Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331–1335 (2008).

    Article  CAS  Google Scholar 

  26. Borisevich, A. Y. et al. Dual nanoparticle/substrate control of catalytic dehydrogenation. Adv. Mater. 19, 2129–2133 (2007).

    Article  CAS  Google Scholar 

  27. Porcu, M., Petford-Long, A. K. & Sykes, J. M. TEM studies of Nb2O5 catalyst in ball-milled MgH2 for hydrogen storage. J. Alloys Compd. 453, 341–346 (2008).

    Article  CAS  Google Scholar 

  28. Cortes-Jácome, M. A. et al. WOx/TiO2 catalysts via titania nanotubes for the oxidation of dibenzothiophene. Chem. Mater. 19, 6605–6614 (2007).

    Article  Google Scholar 

  29. Huang, X., Zhai, H. J., Li, J. & Wang, L. S. On the structure and chemical bonding of tri-tungsten oxide clusters W3On and W3On (n = 7–10): W3O8 as a potential molecular model for O-deficient defect sites in tungsten oxides. J. Phys. Chem. A 110, 85–92 (2006).

    Article  CAS  Google Scholar 

  30. Watanabe, M. et al. Improvements in the X-ray analytical capabilities of a scanning transmission electron microscope by spherical-aberration correction. Microsc. Microanal. 12, 515–526 (2006).

    Article  CAS  Google Scholar 

  31. Varela, M. et al. Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 095502 (2004).

    Article  CAS  Google Scholar 

  32. Muller, D. A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nature Mater. 8, 263–270 (2009).

    Article  CAS  Google Scholar 

  33. Yamamoto, T., Orita, A. & Tanaka, T. Structural analysis of tungsten–zirconium oxide catalyst by W K-edge and L1-edge XAFS. X-Ray Spectrom. 37, 226–231 (2008).

    Article  CAS  Google Scholar 

  34. Valigi, M. et al. WOx/ZrO2 catalysts part 1. Preparation, bulk and surface characterization. Appl. Catal. A—General 231, 159–172 (2002).

    Article  CAS  Google Scholar 

  35. Chang, L. L. Y., Scroger, M. G. & Phillips, B. Condensed phase relations in the systems ZrO2–WO2–WO3 and HfO2–WO2–WO3 . J. Am. Ceram. Soc. 50, 212–216 (1967).

    Google Scholar 

  36. Klenov, D. O. & Stemmer, S. Contributions to the contrast in experimental high-angle annular dark-field images. Ultramicroscopy 106, 889–901 (2006).

    Article  CAS  Google Scholar 

  37. Neurock, M. Perspectives on the first principles elucidation and the design of active sites. J. Catal. 216, 73–88 (2003).

    Article  CAS  Google Scholar 

  38. Ross-Medgaarden, E. I. Tuning the Electronic and Molecular Structures of Catalytic Active Sites with Oxide Nanodomains (Lehigh University, 2007).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation's Nanoscale Interdisciplinary Research Team (NSF-NIRT) program under grant no. 0609018. Two of the authors (M.S.W. and W.V.K.) acknowledge additional support from SABIC Americas.

Author information

Authors and Affiliations

Authors

Contributions

W.Z. devised and carried out the electron microscopy experiments. E.I.R. carried out catalytic performance measurements and prepared the post-impregnation catalyst samples. W.V.K. and M.S.W. prepared some of the catalyst materials. C.J.K. and I.E.W. supervised the project. W.Z. and C.J.K. wrote the paper.

Corresponding author

Correspondence to Christopher J. Kiely.

Supplementary information

Supplementary information

Supplementary information (PDF 1733 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., Ross-Medgaarden, E., Knowles, W. et al. Identification of active Zr–WOx clusters on a ZrO2 support for solid acid catalysts. Nature Chem 1, 722–728 (2009). https://doi.org/10.1038/nchem.433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing