Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Mechanically induced luminescence changes in molecular assemblies

Abstract

Altering the shape and properties of a material through external factors such as heat, light, pressure, pH, electric or magnetic fields, or the introduction of a guest molecule, is an attractive prospect. In this Perspective, piezochromic luminescent materials — which change the colour of their luminescence in response to mechanical stimuli — are described. Such piezochromism has been observed for a few molecular materials that contain luminescent cores in liquid-crystalline and crystalline solid states, as well as for polymeric materials doped with dyes. These changes in photoluminescent colour can be activated by various types of mechanical pressure such as shearing, grinding or elongation, which can trigger different mechanisms of producing the colour. Such stimuli-responsive materials have potential for various applications, including sensors, memory and displays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Piezochromic luminescence observed for compounds 1a and 1b.
Figure 2: Emission images and schematics for the switch of luminescent colour associated with changes in molecular assembled structures, induced by isothermal mechanical stimuli, for compound 1a.
Figure 3: Piezochromic luminescence exhibited by powders of the pyrene derivative 3.
Figure 4: Piezochromic luminescence exhibited by a powder of the Au(I) complex 6.
Figure 5: Switching the luminescent colour of dye-doped polymers.
Figure 6: Mechano-responsive luminescent polymeric beads.

Similar content being viewed by others

References

  1. Lehn, J-M. Toward self-organization and complex matter. Science 295, 2400–2403 (2002).

    CAS  PubMed  Google Scholar 

  2. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    CAS  Google Scholar 

  3. Reinhoudt, D. N. & Crego-Calama, M. Synthesis beyond the molecule. Science 295, 2403–2407 (2002).

    CAS  PubMed  Google Scholar 

  4. Kato, T. Self-assembly of phase-segregated liquid crystal structures. Science 295, 2414–2418 (2002).

    CAS  PubMed  Google Scholar 

  5. Kato, T., Mizoshita, N. & Kishimoto, K. Functional liquid-crystalline assemblies: Self-organized soft materials. Angew. Chem. Int. Ed. 45, 38–68 (2005).

    Google Scholar 

  6. Ciferri, A. (ed.) Supramolecular Polymers 2nd edn (Taylor & Francis, 2005).

    Google Scholar 

  7. Demus, D., Goodby, J. W., Gray, G. W., Spiess, H-W. & Vill, V. (eds) Handbook of Liquid Crystals (Wiley-VCH, 1998).

    Google Scholar 

  8. Ikeda, T., Mamiya, J-I. & Yu, Y. Photomechanics of liquid-crystalline elastomers and other polymers. Angew. Chem. Int. Ed. 46, 506–528 (2007).

    CAS  Google Scholar 

  9. Schneider, H-J., Tianjun, L. & Lomadze, N. Molecular recognition in a supramolecular polymer system translated into mechanical motion. Angew. Chem. Int. Ed. 42, 3544–3546 (2003).

    CAS  Google Scholar 

  10. Harun-Ur-Rashid, M., Seki, T. & Takeoka, Y. Structural colored gels for tunable soft photonic crystals. Chem. Rec. 9, 87–105 (2009).

    CAS  PubMed  Google Scholar 

  11. Yerushalmi, R., Scherz, A., van der Boom, M. E. & Kraatz, H-B. Stimuli responsive materials: new avenues toward smart organic devices. J. Mater. Chem. 15, 4480–4487 (2005).

    CAS  Google Scholar 

  12. Turro, N. J. Modern Molecular Photochemistry (University Science Books, 1978).

    Google Scholar 

  13. Valeur, B. Molecular Fluorescence: Principles and Applications (Wiley-VCH, 2002).

    Google Scholar 

  14. Mutai, T., Satou, H. & Araki, K. Reproducible on–off switching of solid-state luminescence by controlling molecular packing through heat-mode interconversion. Nature Mater. 4, 685–687 (2005).

    CAS  Google Scholar 

  15. Sagara, Y., Mutai, T., Yoshikawa, I. & Araki, K. Material design for piezochromic luminescence: hydrogen-bond-directed assemblies of a pyrene derivative. J. Am. Chem. Soc. 129, 1520–1521 (2007).

  16. Balch, A. L. Dynamic crystals: visually detected mechanochemical changes in the luminescence of gold and other transition-metal complexes. Angew. Chem. Int. Ed. 48, 2641–2644 (2009).

    CAS  Google Scholar 

  17. Sagara, Y. & Kato, T. Stimuli-responsive luminescent liquid crystals: change of photoluminescent colors triggered by a shear-induced phase transition. Angew. Chem. Int. Ed. 47, 5175–5178 (2008).

    CAS  Google Scholar 

  18. Sagara, Y., Yamane, S., Mutai, T., Araki, K. & Kato, T. A stimuli-responsive, photoluminescent, anthracene-based liquid crystal: emission color determined by thermal and mechanical processes. Adv. Funct. Mater. 19, 1869–1875 (2009).

    CAS  Google Scholar 

  19. Kozhevnikov, V. N., Donnio, B. & Bruce, D. W. Phosphorescent, terdentate, liquid-crystalline complexes of platinum(II): stimulus-dependent emission. Angew. Chem. Int. Ed. 47, 6286–6289 (2008).

    CAS  Google Scholar 

  20. Kunzelman, J., Kinami, M., Crenshaw, B. R., Protasiewicz, J. D. & Weder, C. Oligo(p-phenylene vinylene)s as a 'new' class of piezochromic fluorophores. Adv. Mater. 20, 119–122 (2008).

    CAS  Google Scholar 

  21. Mizukami, S. et al. Fluorescence color modulation by intramolecular and intermolecular ππ interactions in a helical zinc(II) complex. Chem. Mater. 17, 50–56 (2005).

    CAS  Google Scholar 

  22. Ito, H. et al. Reversible mechanochromic luminescence of [(C6F5Au)2(μ-1,4-diisocyanobenzene)]. J. Am. Chem. Soc. 130, 10044–10045 (2008).

    CAS  PubMed  Google Scholar 

  23. Lee, Y-A. & Eisenberg, R. Luminescence tribochromism and bright emission in gold(I) thiouracilate complexes. J. Am. Chem. Soc. 125, 7778–7779 (2003).

    CAS  PubMed  Google Scholar 

  24. Abe, T., Itakura, T., Ikeda, N. & Shinozaki, K. Luminescence color change of a platinum(II) complex solid upon mechanical griding. Dalton Trans. 711–715 (2009).

  25. Löwe, C. & Weder, C. Oligo(p-phenylene vinylene) excimers as molecular probes: Deformation-induced color changes in photoluminescent polymer blends. Adv. Mater. 14, 1625–1629 (2002).

    Google Scholar 

  26. Crenshaw, B. R. & Weder, C. Deformation-induced color changes in melt-processed photoluminescent polymer blends. Chem. Mater. 15, 4717–4724 (2003).

    CAS  Google Scholar 

  27. Kinami, M., Crenshaw, B. R. & Weder, C. Polyesters with built-in threshold temperature and deformation sensors. Chem. Mater. 18, 946–955 (2006).

    CAS  Google Scholar 

  28. Pucci, A., Di Cuia, F., Signori, F. & Ruggeri, G. Bis(benzoxazolyl)stilbene excimers as temperature and deformation sensors for biodegradable poly(1,4-butylene succinate) films. J. Mater. Chem. 17, 783–790 (2007).

    CAS  Google Scholar 

  29. Laschat, S. et al. Discotic liquid crystals: From tailor-made synthesis to plastic electronics. Angew. Chem. Int. Ed. 46, 4832–4887 (2007).

    CAS  Google Scholar 

  30. O'Neill, M. & Kelly, S. M. Liquid crystals for charge transport, luminescence, and photonics. Adv. Mater. 15, 1135–1146 (2003).

    CAS  Google Scholar 

  31. Wooley, K. L., Hawker, C. J. & Fréchet, J. M. J. Unsymmetrical three-dimensional macromolecules: Preparation and characterization of strongly dipolar dendritic macromolecules. J. Am. Chem. Soc. 115, 11496–11505 (1993).

    CAS  Google Scholar 

  32. Tomalia, D. A. & Fréchet, J. M. J. Discovery of dendrimers and dendritic polymers: A brief historical perspective. J. Polym. Sci. A 40, 2719–2728 (2002).

    CAS  Google Scholar 

  33. Percec, V., Cho, W-D., Ungar, G. & Yeardley, D. J. P. Synthesis and structural analysis of two constitutional isomeric libraries of AB2-based monodendrons and supramolecular dendrimers. J. Am. Chem. Soc. 123, 1302–1315 (2001).

    CAS  Google Scholar 

  34. Percec, V. et al. Synthesis and retrostructural analysis of libraries of AB3 and constitutional isomeric AB2 phenylpropyl ether-based supramolecular dendrimers. J. Am. Chem. Soc. 128, 3324–3334 (2006).

    CAS  PubMed  Google Scholar 

  35. Saez, I. M. & Goodby, J. W. Supermolecular liquid crystals. Struct. Bond. 128, 1–62 (2008).

    CAS  Google Scholar 

  36. Deschenaux, R., Donnio, B. & Guillon, D. Liquid-crystalline fullerodendrimers. New J. Chem. 31, 1064–1073 (2007).

    CAS  Google Scholar 

  37. Kato, T. Hydrogen-bonded liquid crystals: Molecular self-assembly for dynamically functional materials. Struct. Bond. 96, 95–146 (2000).

    CAS  Google Scholar 

  38. Kobayashi, Y. & Matsunaga, Y. New discogenic compounds: N,N'-Dialkanoyl-2,3,5,6-tetrakis(alkanoyloxy)-1,4-benzenediamines. Bull. Chem. Soc. Jpn 60, 3515–3518 (1987).

    CAS  Google Scholar 

  39. Birks, J. B. Excimers. Rep. Prog. Phys. 38, 903–974 (1975).

    CAS  Google Scholar 

  40. Winnik, F. M. Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. Chem. Rev. 93, 587–614 (1993).

    CAS  Google Scholar 

  41. Tsujii, Y. et al. Multilayer films of chromophoric cellulose octadecanoates studied by fluorescence spectroscopy. Langmuir 8, 936–941 (1992).

    CAS  Google Scholar 

  42. Chen, Z. et al. Photoluminescence and conductivity of self-assembled ππ stacks of perylene bisimide dyes. Chem. Eur. J. 13, 436–449 (2007).

    CAS  PubMed  Google Scholar 

  43. Pujolle-Robic, C. & Noirez, L. Observation of shear-induced nematic–isotropic transition in side-chain liquid crystal polymers. Nature 409, 167–171 (2001).

    CAS  PubMed  Google Scholar 

  44. Yamamoto, J. & Tanaka, H. Shear-induced sponge-to-lamellar transition in a hyperswollen lyotropic system. Phys. Rev. Lett. 77, 4390–4393 (1996).

    CAS  PubMed  Google Scholar 

  45. Davis, D. A. et al. Force-induced activation of covalent bonds in mechanoresposive polymeric materials. Nature 459, 68–72 (2009).

    CAS  PubMed  Google Scholar 

  46. Weder, C. Mechanochemistry: Polymers react to stress. Nature 459, 45–46 (2009).

    CAS  PubMed  Google Scholar 

  47. Yamamoto, T. et al. Preparation of new main-chain type polyanthraquinones. Chemical reactivity, packing structure, piezochromism, conductivity, and liquid crystalline and photonic properties of the polymers. Chem. Mater. 15, 4384–4393 (2003).

    CAS  Google Scholar 

  48. Yoshio, M., Mukai, T., Ohno, H. & Kato, T. One-dimensional ion transport in self-organized columnar ionic liquids. J. Am. Chem. Soc. 126, 994–995 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagara, Y., Kato, T. Mechanically induced luminescence changes in molecular assemblies. Nature Chem 1, 605–610 (2009). https://doi.org/10.1038/nchem.411

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.411

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing