Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective sulfonylation reactions mediated by a tetrapeptide catalyst

Abstract

Nature excels at performing selective modifications of complex polyfunctional molecules by tailoring enzymes, but synthetic chemistry has lagged behind in this regard. In prior work, we have applied a biomimetic approach to this problem, developing small peptides to achieve various group transfer reactions on polyol substrates with high enantio- or regioselectivity. The use of sulfonates as synthetic building blocks and the scarcity of direct, selective methods for their preparation prompted our investigation into this area. In this article we report the development of a π-methyl histidine-based tetrameric peptide that effects the desymmetrization of meso-1,3-diols through enantioselective mono(sulfonylation). The catalyst exhibits structural similarities to another catalyst found to be effective in orthogonal group transfers, but results in modification of the enantiotopic alcohol. The practical and mechanistic implications of this discovery may extend beyond synthetic considerations and provide analogies to the diverse roles of histidine in enzyme active sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: π-Methyl-histidine-containing peptides for group transfer chemistry.
Figure 2: The influence of the arene-sulfonyl chloride on the enantioselectivity and yield.
Figure 3: Kinetic resolution of racemic mono(sulfonate) 2a.
Figure 4: Chirality of proline determines the absolute sense of asymmetric induction.
Figure 5: Determination of absolute configuration of sulfonates by comparison to phosphorylation.

Similar content being viewed by others

References

  1. Peddibhotla, S., Dang, Y., Liu, J. O. & Romo, D. Simultaneous arming and structure/activity studies of natural products employing O–H insertions: an expedient and versatile strategy for natural products-based chemical genetics. J. Am. Chem. Soc. 129, 12222–12231 (2007).

    Article  CAS  Google Scholar 

  2. Miller, S. J., Copeland, G. T., Papaioannou, N., Horstmann, T. E. & Ruel, E. M. Kinetic resolution of alcohols catalyzed by tripeptides containing the N-alkylimidazole substructure. J. Am. Chem. Soc. 120, 1629–1630 (1998).

    Article  CAS  Google Scholar 

  3. Copeland, G. T. & Miller, S. J. Selection of enantioselective acyl transfer catalysts from a pooled peptide library through a fluorescence-based activity assay: an approach to kinetic resolution of secondary alcohols of broad structural scope. J. Am. Chem. Soc. 123, 6496–6502 (2001).

    Article  CAS  Google Scholar 

  4. Sculimbrene, B. R. & Miller, S. J. Discovery of a catalytic asymmetric phosphorylation through selection of a minimal kinase mimic: a concise total synthesis of d-myo-inositol-1-phosphate. J. Am. Chem. Soc. 123, 10125–10126 (2001).

    Article  CAS  Google Scholar 

  5. Evans, J. W., Fierman, M. B., Miller, S. J. & Ellman, J. A. Catalytic enantioselective synthesis of sulfinate esters through the dynamic resolution of tert-butanesulfinyl chloride. J. Am. Chem. Soc. 126, 8134–8135 (2004).

    Article  CAS  Google Scholar 

  6. Sánchez-Roselló, M., Puchlopek, A. L. A., Morgan, A. J. & Miller, S. J. Site-selective catalysis of phenyl thionoformate transfer as a tool for regioselective deoxygenation of polyols. J. Org. Chem. 73, 1774–1782 (2008).

    Article  Google Scholar 

  7. Zhao, Y., Rodrigo, J., Hoveyda, A. H. & Snapper, M. L. Enantioselective silyl protection of alcohols catalysed by an amino-acid-based small molecule. Nature 443, 67–70 (2006).

    Article  CAS  Google Scholar 

  8. Ishihara, K., Kosugi, Y., Umemura, S. & Sakakura, A. Kinetic resolution of racemic carboxylic acids by an l-histidine-derived sulfonamide-induced enantioselective esterification reaction. Org. Lett. 10, 3191–3194 (2008).

    Article  CAS  Google Scholar 

  9. Lewis, C. A. & Miller, S. J. Site-selective derivatization and remodeling of erythromycin A by using simple peptide-based chiral catalysts. Angew. Chem. Int. Ed. 45, 5616–5619 (2006).

    Article  CAS  Google Scholar 

  10. Lewis, C. A., Merkel, J. & Miller, S. J. Catalytic site-selective synthesis and evaluation of a series of erythromycin analogs. Bioorg. Med. Chem. Lett. 18, 6007–6011 (2008).

    Article  CAS  Google Scholar 

  11. Peltier, H. M., Evans, J. W. & Ellman, J. A. Catalytic enantioselective sulfinyl transfer using cinchona alkaloid catalysts. Org. Lett. 7, 1733–1736 (2005).

    Article  CAS  Google Scholar 

  12. Shibata, N., Matsunaga, M., Fukuzumi, T., Nakamura, S. & Toru, T. Cinchona alkaloid-sulfinyl chloride combinations: catalytic enantioselective sulfinylation of alcohols. Synlett 1699–1702 (2005).

  13. Demizu, Y., Matsumoto, K., Onomura, O. & Matsumura, Y. Copper complex catalyzed asymmetric monosulfonylation of meso-vic-diols. Tetrahedron Lett. 48, 7605–7609 (2007).

    Article  CAS  Google Scholar 

  14. Onomura, O., Mitsuda, M., Nguyen, M. T. T. & Demizu, Y. Asymmetric tosylation of racemic 2-hydroxyalkanamides with chiral copper catalyst. Tetrahedron Lett. 48, 9080–9084 (2007).

    Article  CAS  Google Scholar 

  15. Demizu, Y., Kubo, Y., Matsumura, Y. & Onomura, O. Nonenzymatic kinetic resolution of 3-hydroxyalkanamides with chiral copper catalyst. Synlett 433–437 (2008).

  16. Sibi, M. P. & Liu, M. Reversal of stereochemistry in enantioselective transformations. Can they be planned or are they just accidental? Curr. Org. Chem. 5, 719–755 (2001).

    Article  CAS  Google Scholar 

  17. Sculimbrene, B. R., Morgan, A. J. & Miller, S. J. Enantiodivergence in small molecule catalysis of asymmetric phosphorylation: concise total syntheses of the enantiomeric d-myo-inositol-1-phosphate and d-myo-inositol-3-phosphate. J. Am. Chem. Soc. 124, 11653–11656 (2002).

    Article  CAS  Google Scholar 

  18. Haque, T. S., Little, J. C. & Gellman, S. H. Stereochemical requirements for β-hairpin formation: model studies with four-residue peptides and depsipeptides. J. Am. Chem. Soc. 118, 6975–6985 (1996).

    Article  CAS  Google Scholar 

  19. Asano, K. & Matsubara, S. Amphiphilic organocatalyst for Schotten-Baumann-type tosylation of alcohols under organic solvent free condition. Org. Lett. 11, 1757–1759 (2009).

    Article  CAS  Google Scholar 

  20. Lewis, C. A., Chiu, A., Kubryk, M., Balsells, J., Pollard, D., Esser, C. K., Murry, J., Reamer, R. A., Hansen, K. B. & Miller, S. J. Remote desymmetrization at near-nanometer group separation catalyzed by a miniaturized enzyme mimic. J. Am. Chem. Soc. 128, 16454–16455 (2006).

    Article  CAS  Google Scholar 

  21. Lewis, C. A., Gustafson, J. L., Chiu, A., Balsells, J., Pollard, D., Murry, J., Reamer, R. A., Hansen, K. B. & Miller, S. J. A case of remote asymmetric induction in the peptide-catalyzed desymmetrization of a bis(phenol). J. Am. Chem. Soc. 130, 16358–16365 (2008).

    Article  CAS  Google Scholar 

  22. Schreiber, S. L., Schreiber, T. S. & Smith, D. B. Reactions that proceed with a combination of enantiotopic group and diastereotopic face selectivity can deliver products with very high enantiomeric excess: experimental support of a mathematical model. J. Am. Chem. Soc. 109, 1525–1529 (1987).

    Article  CAS  Google Scholar 

  23. Copeland, G. T., Jarvo, E. R. & Miller, S. J. Minimal acylase-like peptides. Conformational control of absolute stereospecificity. J. Org. Chem. 63, 6784–6785 (1998).

    Article  CAS  Google Scholar 

  24. Denmark, S. E. & Beutner, G. L. Lewis base catalysis in organic synthesis. Angew. Chem. Int. Ed. 47, 1560–1638 (2008).

    Article  CAS  Google Scholar 

  25. Pirrung, M. C. Histidine kinases and two-component signal transduction systems. Chem. Biol. 6, R167–R175 (1999).

    Article  CAS  Google Scholar 

  26. Jencks, W. P. Catalysis in Chemistry and Enzymology 218–226 (Dover, 1975).

    Google Scholar 

  27. Anantharaman, V., Aravind, L. & Koonin, E. V. Emergence of diverse biochemical activities in evolutionarily conserved structural scaffolds of proteins. Curr. Opin. Chem. Biol. 7, 12–20 (2003).

    Article  CAS  Google Scholar 

  28. Yoon, T. P. & Jacobsen, E. N. Privileged chiral catalysts. Science 299, 1691–1693 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institutes of Health (NIH) (GM-068649). K.W.F. would like to thank the NIH for a postdoctoral fellowship (1F32GM083622).

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the experiments and analysed the data. K.W.F and A.L.A.P. performed the experiments, K.W.F and S.J.M. wrote the paper jointly, and all authors edited and commented on the manuscript.

Corresponding author

Correspondence to Scott J. Miller.

Supplementary information

Supplementary information

Supplementary information (PDF 4187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiori, K., Puchlopek, A. & Miller, S. Enantioselective sulfonylation reactions mediated by a tetrapeptide catalyst. Nature Chem 1, 630–634 (2009). https://doi.org/10.1038/nchem.410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.410

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing