Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anhydrous proton conduction at 150 °C in a crystalline metal–organic framework

Abstract

Metal organic frameworks (MOFs) are particularly exciting materials that couple porosity, diversity and crystallinity. But although they have been investigated for a wide range of applications, MOF chemistry focuses almost exclusively on properties intrinsic to the empty frameworks; the use of guest molecules to control functions has been essentially unexamined. Here we report Na3(2,4,6-trihydroxy-1,3,5-benzenetrisulfonate) (named β-PCMOF2), a MOF that conducts protons in regular one-dimensional pores lined with sulfonate groups. Proton conduction in β-PCMOF2 was modulated by the controlled loading of 1H-1,2,4-triazole (Tz) guests within the pores and reached 5 × 10−4 S cm−1 at 150 °C in anhydrous H2, as confirmed by electrical measurements in H2 and D2, and by solid-state NMR spectroscopy. To confirm its potential as a gas separator membrane, the partially loaded MOF (β-PCMOF2(Tz)0.45) was also incorporated into a H2/air membrane electrode assembly. The resulting membrane proved to be gas tight, and gave an open circuit voltage of 1.18 V at 100 °C.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Single-crystal X-ray structure of β-PCMOF2.
Figure 2: Comparison between the simulated and experimental powder X-ray diffraction (PXRD) patterns for β-PCMOF2.
Figure 3: Comparison of the Arrhenius plots of β-PCMOF2, [β-PCMOF2(Tz)0.3], [β-PCMOF2(Tz)0.45], and [β-PCMOF2(Tz)0.6] measured in anhydrous H2 atmospheres (data from the second heating cycles is shown to remove hydration).
Figure 4: a.c. impedance plots of as-pressed pellets of β-PCMOF2(Tz)0.3 at 90 °C in dry H2 and D2.
Figure 5: Open-circuit voltage measurements performed over time at different temperatures, using the following electrochemical cell: H2, Pt,C|β-PCMOF2(Tz)0.45|Pt,C, air.
Figure 6: Comparison of β-PCMOF2(Tz)0.3 with other proton-conducting materials.

References

  1. Kitagawa, S. & Matsuda, R. Chemistry of coordination space of porous coordination polymers. Coord. Chem. Rev. 251, 2490–2509 (2007).

    CAS  Article  Google Scholar 

  2. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    CAS  Article  Google Scholar 

  3. Mueller, U. et al. Metal–organic frameworks- prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006).

    CAS  Article  Google Scholar 

  4. Collins, D. J. & Zhou, H. C. Hydrogen storage in metal-organic frameworks. J. Mater. Chem. 17, 3154–3160 (2007).

    CAS  Article  Google Scholar 

  5. Choi, H. J., Dinca, M. & Long, J. R. Broadly hysteretic H2 adsorption in the microporous metal-organic framework Co(1,4-benzenedipyrazolate). J. Am. Chem. Soc. 130, 7848–7850 (2008).

    CAS  Article  Google Scholar 

  6. Wang, B., Côté, A. P., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–211 (2008).

    CAS  Article  Google Scholar 

  7. Vaidhyanathan, R., Iremonger, S. S., Dawson, K. W. & Shimizu, G. K. H. An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures. Chem. Commun. 5230–5232 (2009).

  8. Ma, S. Q. et al. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J. Am. Chem. Soc. 130, 1012–1016 (2008).

    CAS  Article  Google Scholar 

  9. Nagao, Y., Fujishima, M., Ikeda, R., Kanda, S. & Kitagawa, H. Highly proton-conductive copper coordination polymers. Synth. Metals 133, 431–432 (2003).

    Article  Google Scholar 

  10. Nagao, Y. et al. Preparation and proton transport property of N,N′- diethyldithiooxamidatocopper coordination polymer. Synth. Metals 154, 89–92 (2005).

    CAS  Article  Google Scholar 

  11. Yamada, T., Sadakiyo, M. & Kitagawa, H. High proton conductivity of one-dimensional ferrous oxalate dehydrate. J. Am. Chem. Soc. 131, 3144–3145 (2009).

    CAS  Article  Google Scholar 

  12. Serre, C. et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828–1831 (2007).

    CAS  Article  Google Scholar 

  13. Choi, H. J. & Suh, M. P. Dynamic and redox active pillared bilayer open framework: single-crystal-to-single-crystal transformations upon guest removal, guest exchange, and framework oxidation. J. Am. Chem. Soc. 126, 15844–15851 (2004).

    CAS  Article  Google Scholar 

  14. Bradshaw, D., Warren, J. E. & Rosseinsky, M. J. Reversible concerted ligand substitution at alternating metal sites in an extended solid. Science 315, 977–980 (2007).

    CAS  Article  Google Scholar 

  15. Chandler, B. D. et al. Mechanical gas capture and release in a network solid via multiple single crystalline transformations. Nature Mater. 7, 229 (2008).

    CAS  Article  Google Scholar 

  16. Shimizu, G. K. H. Assembly of metal ions and ligands with adaptable coordinative tendencies as a route to functional metal-organic solids. J. Solid State Chem. 178, 2519 (2005).

    CAS  Article  Google Scholar 

  17. Zhang, J. et al. High temperature PEM fuel cells. J. Power Sources 160, 872–891 (2006).

    CAS  Article  Google Scholar 

  18. Mauritz, K. A. & Moore, R. B. State of understanding of Nafion. Chem. Rev. 104, 4535–4586 (2004).

    CAS  Article  Google Scholar 

  19. Kreuer, K. D., Paddison, S. J., Spohr, E. & Schuster, M. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem. Rev. 104, 4637–4678 (2004).

    CAS  Article  Google Scholar 

  20. Li, Q. F., He, R. H., Jensen, J. O. & Bjerrum, N. J. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem. Mater. 15, 4896–4915 (2003).

    CAS  Article  Google Scholar 

  21. Shimizu, G. K. H., Hurd, J. A., Vaidhyanathan, R. & Taylor, J. M. Metal–organic solids for use in proton exchange membranes. US Patent, 2008/0160356 A1 (2008).

  22. Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R. & McGrath, J. E. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587–4612 (2004).

    CAS  Article  Google Scholar 

  23. Alberti, G. & Casciola, M. Solid state protonic conductors, present main applications and future prospects. Solid State Ionics 145, 3–16 (2001).

    CAS  Article  Google Scholar 

  24. Kreuer, K. D. Proton conductivity: materials and applications. Chem. Mater. 8, 610–641 (1996).

    CAS  Article  Google Scholar 

  25. Goward, G. R., Schuster, M. F. H., Sebastiani, D., Schnell, I. & Spiess, H. W. High-resolution solid-state NMR studies of imidazole-based proton conductors: Structure motifs and chemical exchange from 1H NMR. J. Phys. Chem. B 106, 9322–9334 (2002).

    CAS  Article  Google Scholar 

  26. Li, S., Zhou, Z., Zhang, Y., Liu, M. & Li, W. 1H-1,2,4-Triazole: An effective solvent for proton-conducting electrolytes. Chem. Mater. 17, 5884–5886 (2005).

    CAS  Article  Google Scholar 

  27. Marti-Rujas, J., Desmedt, A., Harris, K. D. M. & Guillaume, F. Direct time-resolved and spatially resolved monitoring of molecular transport in a crystalline nanochannel system. J. Am. Chem. Soc. 126, 11124–11125 (2004).

    CAS  Article  Google Scholar 

  28. Irvine, J. T. S., Sinclair, D. C. & West, A. R. Electroceramics: Characterization by impedance spectroscopy. Adv. Mater. 2, 132–138 (1990).

    CAS  Article  Google Scholar 

  29. Casciola, M., Alberti, G., Sganappa, M. & Narducci, R. On the decay of Nafion proton conductivity at high temperature and relative humidity. J. Power Sources 162, 141–145 (2006).

    CAS  Article  Google Scholar 

  30. Haile, S. M., Chisholm, C. R. I., Sasaki, K., Boysen, D. A. & Uda, T. Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes. Faraday Discuss. 134, 17–39 (2007).

    CAS  Article  Google Scholar 

  31. Yamada, M. & Honma, I. Heteropolyacid-encapsulated self-assembled materials for anhydrous proton-conducting electrolytes. J. Phys. Chem. B 110, 20486–20490 (2006).

    CAS  Article  Google Scholar 

  32. Yamada, M. & Honma, I. An anhydrous proton conductor based on lactam-lactim tautomerism of uracil. ChemPhysChem 5, 724–728 (2004).

    CAS  Article  Google Scholar 

  33. Bhella, S. S. & Thangadurai, V. Synthesis and characterization of carbon dioxide and boiling water stable proton conducting double perovskite-type metal oxides. J. Power Sources 186, 311–319 (2009).

    CAS  Article  Google Scholar 

  34. Haile, S. Fuel cell materials and components. Acta Materialia 51, 5981–6000 (2003).

    CAS  Article  Google Scholar 

  35. Zhang, J. L., Tang, Y. H., Song, C. J., Zhang, J. J. & Wang, H. J. PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 degrees C to 120 degrees C. J. Power Sources, 163, 532–537 (2006).

    CAS  Article  Google Scholar 

  36. Haile, S. M., Boysen, D. A., Chisholm, C. R. I. & Merle, R. B. Solid acids as fuel cell electrolytes. Nature 410, 910–913 (2001).

    CAS  Article  Google Scholar 

  37. Alberti, G., Boccali, L., Casciola, M., Massinelli, L. & Montoner, E. Protonic conductivity of layered zirconium phosphonates containing -SO3H groups. 3. Preparation and characterization of gamma-zirconium sulfoaryl phosphonates Solid State Ionics 84, 97–104 (1996).

    CAS  Article  Google Scholar 

  38. Casciola, M., Marmottini, F. & Peraio, A. AC conductivity of α-layered Zr phosphate in the presence of water vapor at 100–200 °C. Solid State Ionics 61, 125–129 (1993).

    CAS  Article  Google Scholar 

  39. Stein, E. W., Clearfield, A. & Subramanian, M. A. Conductivity of group IV metal sulfophosphonates and a new class of interstratified metal amine-sulfophosphonates. Solid State Ionics 83, 113–124 (1996).

    CAS  Article  Google Scholar 

  40. Athens, G. L., Ein-Eli, Y. & Chmelka, B. F. Acid-functionalized mesostructured aluminosilica for hydrophilic proton conduction membranes. Adv. Mater. 19, 2580–2587 (2007).

    CAS  Article  Google Scholar 

  41. Horike, S. et al. Immobilization of sodium ions on the pore surface of a porous coordination polymer. J. Am. Chem. Soc. 128, 4222–4223 (2006).

    CAS  Article  Google Scholar 

  42. Alkordi, M. H., Liu, Y. L., Larsen, R. W., Eubank, J. F. & Eddaoudi, M. Zeolite-like metal-organic frameworks as platforms for applications: On metalloporphyrin-based catalysts. J. Am. Chem. Soc. 130, 12639–12641 (2008).

    CAS  Article  Google Scholar 

  43. Hermes, S., Schroder, F., Amirjalayer, S., Schmid, R. & Fischer, R. A. Loading of porous metal-organic open frameworks with organometallic CVD precursors: inclusion compounds of the type [LnM]a@MOF-5. J. Mater. Chem. 16, 2464–2472 (2006).

    CAS  Article  Google Scholar 

  44. Ohmori, O. & Fujita, M. Heterogeneous catalysis of a coordination network: cyanosilylation of imines catalyzed by a Cd(II)-(4,4′-bipyridine) square grid complex. Chem. Commun. 1586–1587 (2004).

  45. Dybtsev, D. N. et al. Homochiral metal–organic material with permanent porosity, enantioselective sorption properties, and catalytic activity. Angew. Chem. Int. Ed. 45, 916–920 (2006).

    CAS  Article  Google Scholar 

  46. Cho, S. H., Ma, B., Nguyen, S. B. T., Hupp, J. T. & Albrecht-Schmitt, T. E. A metal–organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem. Commun. 2563–2565 (2006).

  47. Wu, C. D. & Lin, W. B. Heterogeneous asymmetric catalysis with homochiral metal–organic frameworks: Network-structure-dependent catalytic activity. Angew. Chem. Int. Ed. 46, 1075–1078 (2007).

    CAS  Article  Google Scholar 

  48. Neville, S. M. et al. Single-crystal to single-crystal structural transformation and photomagnetic properties of a porous iron(II) spin-crossover framework. J. Am. Chem. Soc. 130, 2869–2876 (2008).

    CAS  Article  Google Scholar 

  49. Katz, M. J., Ramnial, T., Yu, H. Z. & Leznoff, D. B. Polymorphism of Zn[Au(CN)2]2 and its luminescent sensory response to NH3 vapor. J. Am. Chem. Soc. 130, 10662–10673 (2008).

    CAS  Article  Google Scholar 

  50. Alberti, G. & Casciola, M. Composite membranes for medium-temperature PEM fuel cells. Annu. Rev. Mater. Sci. 33, 129–154 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Western Canada Fuel Cell Initiative, Alberta Energy Research Institute, University Technologies International, Southern Alberta Intellectual Property Alliance, the Natural Sciences and Engineering Research Council of Canada and the Canadian Foundation for Innovation for funding.

Author information

Authors and Affiliations

Authors

Contributions

J.A.H. designed experiments, performed synthesis, characterization and property studies. R.V. grew crystals, performed crystallography and SEM/EDX. V.T. designed impedance and membrane electrode assembly experiments. C.I.R. and I.L.M. designed and performed solid state NMR experiments. G.K.H.S. conceived the project and drafted the manuscript. All authors discussed results and commented on the manuscript.

Corresponding author

Correspondence to George K. H. Shimizu.

Supplementary information

Supplementary information

Supplementary information (PDF 7085 kb)

Supplementary information

Crystallographic information for the metal–organic framework β-PCMOF2 (CIF 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hurd, J., Vaidhyanathan, R., Thangadurai, V. et al. Anhydrous proton conduction at 150 °C in a crystalline metal–organic framework. Nature Chem 1, 705–710 (2009). https://doi.org/10.1038/nchem.402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.402

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing