Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems


Water-soluble, self-assembled nanocapsules composed of a functional bilayer membrane and enclosed guest molecules can provide smart (that is, condition responsive) sensors for a variety of purposes. Owing to their outstanding optical and redox properties, perylene bisimide chromophores are interesting building blocks for a functional bilayer membrane in a water environment. Here, we report water-soluble perylene bisimide vesicles loaded with bispyrene-based energy donors in their aqueous interior. These loaded vesicles are stabilized by in situ photopolymerization to give nanocapsules that are stable over the entire aqueous pH range. On the basis of pH-tunable spectral overlap of donors and acceptors, the donor-loaded polymerized vesicles display pH-dependent fluorescence resonance energy transfer from the encapsulated donors to the bilayer dye membrane, providing ultrasensitive pH information on their aqueous environment with fluorescence colour changes covering the whole visible light range. At pH 9.0, quite exceptional white fluorescence could be observed for such water-soluble donor-loaded perylene vesicles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Formation of donor-loaded perylene bisimide vesicles in aqueous solution by changes in spontaneous curvatures.
Figure 2: Preparation procedures and morphologies of unloaded and loaded perylene bisimide vesicles, and donor-loaded polymerized perylene bisimide vesicles.
Figure 3: Spectral overlap of bispyrene-based donors and bilayer perylene bisimide membrane as acceptor at different pH.
Figure 4: pH-dependent energy transfer from encapsulated donors to bilayer perylene membrane acceptor for donor-loaded polymerized vesicles.
Figure 5: Time-resolved fluorescence spectra of donor-loaded polymerized vesicles in aqueous solution.


  1. 1

    Guo, X. & Szoka, F. C. Chemical approaches to triggerable lipid vesicles for drug and gene delivery. Acc. Chem. Res. 36, 335–341 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Litvinchuk, S. et al. Synthetic pores with reactive signal amplifiers as artificial tongues. Nature Mater. 6, 576–580 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Bhosale, S. et al. Photoproduction of proton gradients with II-stacked fluorophore scaffolds in lipid bilayers. Science 313, 84–86 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Steinberg-Yfrach, G. et al. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 385, 239–241 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Ringsdorf, H., Schlarb, B. & Venzmer, J. Molecular architecture and function of polymeric oriented systems - models for the study of organization, surface recognition, and dynamics of biomembranes. Angew. Chem. Int. Ed. 27, 113–158 (1988).

    Article  Google Scholar 

  6. 6

    Discher, D. E. & Eisenberg, A. Polymer vesicles. Science 297, 967–973 (2002).

    CAS  Article  Google Scholar 

  7. 7

    Stupp, S. I. et al. Supramolecular materials: self-organized nanostructures. Science 276, 384–389 (1997).

    CAS  Article  Google Scholar 

  8. 8

    Kunitake, T. Synthetic bilayer-membranes—molecular design, self-organization, and application. Angew. Chem. Int. Ed. 31, 709–726(1992).

    Article  Google Scholar 

  9. 9

    Fuhrhop, J. H., Liman, U. & Koesling, V. A macrocyclic tetraether bolaamphiphile and an oligoamino α, ω-dicarboxylate combine to form monolayered, porous vesicle membranes, which are reversibly sealed by EDTA and other bulky anions. J. Am. Chem. Soc. 110, 6840–6845 (1988).

    CAS  Article  Google Scholar 

  10. 10

    Seo, S. H., Chang, J. Y. & Tew, G. N. Self-assembled vesicles from an amphiphilic ortho- phenylene ethynylene macrocycle. Angew. Chem. Int. Ed. 45, 7526–7530 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Moon, K. S., Kim, H.-J., Lee, E. & Lee, M. Self-assembly of T-shaped aromatic amphiphiles into stimulus-responsive nanofibers. Angew. Chem. Int. Ed. 46, 6807–6810 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Schade, B., Ludwig, K., Böttcher, C., Hartnagel, U. & Hirsch, A. Supramolecular structure of 5-nm spherical micelles with D3 symmetry assembled from amphiphilic [3:3]-hexakis adducts of C60. Angew. Chem. Int. Ed. 46, 4393–4396 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Tanaka, Y., Miyachi, M. & Kobuke, Y. Selective vesicle formation from calixarenes by self-assembly. Angew. Chem. Int. Ed. 38, 504–506 (1999).

    CAS  Article  Google Scholar 

  14. 14

    Shklyarevskiy, I. O. et al. Magnetic deformation of self-assembled sexithiophene spherical nanocapsules. J. Am. Chem. Soc. 127, 1112–1113 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Ryu, J.-H., Hong, D.-J. & Lee, M. Aqueous self-assembly of aromatic rod building blocks. Chem. Commun. 1043–1054 (2008).

  16. 16

    Vriezema, D. M. et al. Self-assembled nanoreactors. Chem. Rev. 105, 1445–1489 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Würthner, F. Generating a photocurrent on the nanometer scale. Science, 314, 1693–1694 (2006).

    Article  Google Scholar 

  18. 18

    Schryver, F. C. et al. Energy dissipation in multichromophoric single dendrimers. Acc. Chem. Res. 38, 514–522 (2005).

    Article  Google Scholar 

  19. 19

    Wasielewski, M. R. Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis. J. Org. Chem. 71, 5051–5066 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Schmidt-Mende, L. et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293, 1119–1122 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Zhang, X., Chen, Z. & Würthner, F. Morphology control of fluorescent nanoaggregates by co-self-assembly of wedge- and dumbbell-shaped amphiphilic perylene bisimides. J. Am. Chem. Soc. 129, 4886–4887 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563–566 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Tajima, K. & Aida, T. Controlled polymerizations with constrained geometries. Chem. Commun. 2399–2412 (2000).

  24. 24

    Mueller, A. & O'Brien, D. F. Supramolecular materials via polymerization of mesophases of hydrated amphiphiles. Chem. Rev. 102, 727–757 (2002).

    CAS  Article  Google Scholar 

  25. 25

    Giacomelli, C., Schmidt, V. & Borsali, R. Nanocontainers formed by self-assembly of poly(ethyleneoxide)-b-poly(glycerolmonomethacrylate) drug conjugates. Macromolecules 40, 2148–2157 (2007).

    CAS  Article  Google Scholar 

  26. 26

    Sauer, M., Streich, D. & Meier, W. pH-Sensitive nanocontainers. Adv. Mater. 13, 1649–1651 (2001).

    CAS  Article  Google Scholar 

  27. 27

    Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Plenum, 1999).

    Google Scholar 

  28. 28

    Riddle, J. A., Jiang, X., Huffman, J. & Lee, D. Signal-amplifying resonance energy transfer: A dynamic multichromophore array for allosteric switching. Angew. Chem. Int. Ed. 46, 7019–7022 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Sagawa, T., Fukugawa, S., Yamada, T. & Ihara, H. Self-assembled fibrillar networks through highly oriented aggregates of porphyrin and pyrene substituted by dialkyl l-glutamine in organic media. Langmuir 18, 7223–7228 (2002).

    CAS  Article  Google Scholar 

  30. 30

    Marti, A. A., Jockusch, S., Stevens, N., Ju, J. & Turro, N. J. Fluorescent hybridization probes for sensitive and selective DNA and RNA detection. Acc. Chem. Res. 40, 402–409 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Shiraishi, Y., Tokitoh, Y. & Hirai, T. pH- and H2O-Driven triple-mode pyrene fluorescence. Org. Lett. 8, 3841–3844 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005).

    CAS  Article  Google Scholar 

  33. 33

    Ajayaghosh, A., Praveen, V. K., Vijayakumar, C. & George, S. J. Molecular wire encapsulated into pi organogels: efficient supramolecular light-harvesting antennae with colour-tunable emission. Angew. Chem. Int. Ed. 46, 6260–6265 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Abbel, R. et al. White-light emitting hydrogen-bonded supramolecular copolymers based on pi-conjugated oligomers. J. Am. Chem. Soc. 131, 833–843 (2009).

    CAS  Article  Google Scholar 

Download references


We thank the DFG (grant project: Wu 317/10) and the Alexander von Humboldt Foundation (fellowship for X.Z.) for financial support and Georg Krohne for his help with TEM measurements.

Author information




F.W. conceived and designed the experiments. X.Z., S.R. and M.M.S-S. performed the experiments. X.Z. and F.W. co-wrote the paper.

Corresponding author

Correspondence to Frank Würthner.

Supplementary information

Supplementary information

Supplementary information (PDF 3580 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, X., Rehm, S., Safont-Sempere, M. et al. Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems. Nature Chem 1, 623–629 (2009).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing