Geometric and electronic structure and reactivity of a mononuclear ‘side-on’ nickel(iii)–peroxo complex


Metal-dioxygen adducts, such as metal-superoxo and -peroxo species, are key intermediates often detected in the catalytic cycles of dioxygen activation by metalloenzymes and biomimetic compounds. The synthesis and spectroscopic characterization of an end-on nickel(II)-superoxo complex with a 14-membered macrocyclic ligand was reported previously. Here we report the isolation, spectroscopic characterization, and high-resolution crystal structure of a mononuclear side-on nickel(III)-peroxo complex with a 12-membered macrocyclic ligand, [Ni(12-TMC)(O2)]+ (1) (12-TMC = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane). In contrast to the end-on nickel(II)-superoxo complex, the nickel(III)-peroxo complex is not reactive in electrophilic reactions, but is capable of conducting nucleophilic reactions. The nickel(III)-peroxo complex transfers the bound dioxygen to manganese(II) complexes, thus affording the corresponding nickel(II) and manganese(III)-peroxo complexes. Our results demonstrate the significance of supporting ligands in tuning the geometric and electronic structures and reactivities of metal–O2 intermediates that have been shown to have biological as well as synthetic usefulness in biomimetic reactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characterization of 1.
Figure 2: X-ray crystal structure of 1.
Figure 3: Ni K-edge X-ray absorption spectra of 1 (red) and 2 (black).
Figure 4: Formation of Ni(III)-peroxo versus Ni(II)-superoxo intermediates.
Figure 5: Reaction scheme showing an intermolecular O2 transfer between metal complexes.
Figure 6: Spectral evidence for an intermolecular O2 transfer from 1 to 4.


  1. 1

    Nam, W. (ed.) Special issue on dioxygen activation by metalloenzymes and models. Acc. Chem. Res. 40, 465–634 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Unno, M., Chen, H., Kusama, S., Shaik, S. & Ikeda-Saito, M. Structural characterization of the fleeting ferric peroxo species in myoglobin: experiment and theory. J. Am. Chem. Soc. 129, 13394–13395 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Kovaleva, E. G. & Lipscomb, J. D. Crystal structures of Fe2+ dioxygenase superoxo, alkylperoxo, and bound product intermediates. Science 316, 453–457 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Prigge, S. T., Eipper, B. A., Mains, R. E. & Amzel, L. M. Dioxgyen binds end-on to mononuclear copper in a precatalytic enzyme complex. Science 304, 864–867 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Klotz, I. M. & Kurtz, D. M. Jr (eds) Special issue on metal-dioxygen complexes. Chem. Rev. 94, 567–856 (1994).

    CAS  Article  Google Scholar 

  6. 6

    Wertz, D. L. & Valentine, J. S. Nucleophilicity of iron-peroxo porphyrin complexes. Struct. Bonding 97, 37–60 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Girerd, J.-J., Banse, F. & Simaan, A. J. Characterization and properties of non-heme iron peroxo complexes. Struct. Bonding 97, 145–177 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Bakac, A. Kinetic and mechanistic studies of the reactions of transition metal-activated oxygen with inorganic substrates. Coord. Chem. Rev. 250, 2046–2058 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Hikichi, S., Akita, M. & Moro-oka, Y. New aspects of the cobalt-dioxygen complex chemistry opened by hydrotris(pyrazoly)borate ligands (TpR): unique properties of TpRCo-dioxygen complexes. Coord. Chem. Rev. 198, 61–87 (2000).

    CAS  Article  Google Scholar 

  10. 10

    Mirica, L. M., Ottenwaelder, X. & Stack, T. D. P. Structure and spectroscopy of copper−dioxygen complexes. Chem. Rev. 104, 1013–1045 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Lewis E. A. & Tolman, W. B. Reactivity of dioxygen-copper systems. Chem. Rev. 104, 1047–1076 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Hatcher, L. Q. & Karlin, K. D. Oxidant types in copper-dioxygen chemistry: the ligand coordination defines the Cun-O2 structure and subsequent reactivity. J. Biol. Inorg. Chem. 9, 669–683 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Itoh, S. Mononuclear copper active-oxygen complexes. Curr. Opin. Chem. Biol. 10, 115–122 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Cramer, C. J. & Tolman, W. B. Mononuclear Cu−O2 complexes: geometries, spectroscopic properties, electronic structures, and reactivity. Acc. Chem. Res. 40, 601–608 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Rolff, M. & Tuczek, F. How do copper enzymes hydroxylate aliphatic substrates? Recent insights from the chemistry of model systems. Angew. Chem. Int. Ed. 47, 2344–2347 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Chen, P. & Solomon, E. I. O2 activation by binuclear Cu sites: noncoupled versus exchange coupled reaction mechanisms. Proc. Natl Acad. Sci. USA 101, 13105–13110 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Fujisawa, K., Tanaka, M., Moro-oka, Y. & Kitajima, N. A monomeric side-on superoxocopper(II) complex: Cu(O2)(HB(3-tBu-5-iPrpz)3). J. Am. Chem. Soc. 116, 12079–12080 (1994).

    CAS  Article  Google Scholar 

  18. 18

    Spencer, D. J. E., Aboelella, N. W., Reynolds, A. M., Holland, P. L. & Tolman, W. B. β-Diketiminate ligand backbone structural effects on Cu(I)/O2 reactivity: unique copper−superoxo and bis(μ-oxo) complexes. J. Am. Chem. Soc. 124, 2108–2109 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Würtele, C. et al. Crystallographic characterization of a synthetic 1:1 end-on copper dioxygen adduct complex. Angew. Chem. Int. Ed. 45, 3867–3869 (2006).

    Article  Google Scholar 

  20. 20

    Gherman, B. F. & Cramer, C. J. Modeling the peroxide/superoxide continuum in 1:1 side-on adducts of O2 with Cu. Inorg. Chem. 43, 7281–7283 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Aboelella, N. W. et al. Dioxygen activation at a single copper site: structure, bonding, and mechanism of formation of 1:1 Cu-O2 Adducts. J. Am. Chem. Soc. 126, 16896–16911 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Reynolds, A. M., Gherman, B. F., Cramer, C. J. & Tolman, W. B. Characterization of a 1:1 Cu-O2 adduct supported by an anilido imine ligand. Inorg. Chem. 44, 6989–6997 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Sarangi, R. et al. X-ray absorption edge spectroscopy and computational studies on LCuO2 species: superoxide − CuII versus peroxide − CuIII bonding. J. Am. Chem. Soc. 128, 8286–8296 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Kieber-Emmons, M. T. & Riordan, C. G. Dioxygen activation at monovalent nickel. Acc. Chem. Res. 40, 618–625 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Kieber-Emmons, M. T. et al. Identification of an “end-on” nickel−superoxo adduct, [Ni(TMC)(O2)]+. J. Am. Chem. Soc. 128, 14230–14231 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Yao, S., Bill, E., Milsmann, C., Wieghardt, K. & Driess, M. A ‘side-on’ superoxonickel complex [LNi(O2)] with a square-planar tetracoordinate nickel(II) center and its conversion into [LNi(μ-OH)2NiL]. Angew. Chem. Int. Ed. 47, 7110–7113 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Matsumoto, M. & Nakatsu, K. Dioxygen-bis-(t-butylisocyanide)nickel. Acta Cryst. B31, 2711–2713 (1975).

    Article  Google Scholar 

  28. 28

    Haines, R. I. & McAuley, A. Synthesis and reactions of nickel(III) complexes. Coord. Chem. Rev. 39, 77–119 (1981).

    CAS  Article  Google Scholar 

  29. 29

    Cho, J. et al. Sequential reaction intermediates in aliphatic C − H bond fuctionalization initiated by a bis(μ-oxo)dinickel(III) complex. Inorg. Chem. 45, 2873–2885 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Evans, D. F. & Jakubovic, D. A. Water-soluble hexadentate Schiff-base lignads as sequestrating agents for iron(III) and gallium(III). J. Chem. Soc. Dalton Trans. 2927–2933 (1988).

  31. 31

    Cramer, C. J., Tolman, W. B., Theopold, K. H. & Rheingold, A. L. Varible character of O−O and M−O bonding in side-on (η2) 1:1 metal complexes of O2 . Proc. Natl Acad. Sci. USA 100, 3635–3640 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Shulman, R. G., Yafet, Y., Eisenberger, P. & Blumberg, W. E. Observation and interpretation of X-ray absorption edges in iron compounds and proteins. Proc. Natl Acad. Sci. USA 73, 1384–1388 (1976).

    CAS  Article  Google Scholar 

  33. 33

    Colpas, G. J. et al. X-ray spectroscopic studies of nickel complexes, with application to the structure of nickel sites in hydrogenases. Inorg. Chem. 30, 920–928 (1991).

    CAS  Article  Google Scholar 

  34. 34

    Vaz, A. D. N., Roberts, E. S. & Coon, M. J. Olefin formation in the oxidative deformylation of aldehydes by cytochrome P-450. Mechanistic implications for catalysis by oxygen-derived peroxide. J. Am. Chem. Soc. 113, 5886–5887 (1991).

    CAS  Article  Google Scholar 

  35. 35

    Seo, M. S. et al. [Mn(TMC)(O2)]+: a side-on peroxido manganese(III) complex bearing a non-heme ligand. Angew. Chem. Int. Ed. 46, 377–380 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Kieber-Emmons, M. T., Schenker, R., Yap, G. P. A., Brunold, T. C. & Riordan, C. G. Spectroscopic elucidation of a peroxo Ni2(μ-O2) intermediate derived from a nickel(I) complex and dioxygen. Angew. Chem. Int. Ed. 43, 6716–6718 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Aboelella, N. W. et al. Mixed metal bis(μ-oxo) complexes with [CuM(μ-O)2]n+ (M = Ni(III) or Pd(II)) cores. Chem. Commun. 1716–1717 (2004).

  38. 38

    Chufán, E. E., Puiu, S. C. & Karlin, K. D. Heme − copper/dioxygen adduct formation, properties, and reactivity. Acc. Chem. Res. 40, 563–572 (2007).

    Article  Google Scholar 

Download references


The research was supported by KOSEF/MEST of Korea through the CRI and WCU (R31-2008-000-10010-0) Programs (W.N.), SBS Foundation (W.N.), the Ministry of Education, Culture, Sports, Science and Technology of Japan through the Global COE program and Priority Area (No. 20050029) (T.O.), and NIH grant DK-31450 (E.I.S.). SSRL operations are funded by the Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology program is supported by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and the Department of Energy, Office of Biological and Environmental Research.

Author information




J.C., E.I.S., and W.N. conceived and designed the experiments; J.C., R.S., J.A., S.Y.K., and M.K. performed the experiments; J.C., R.S., J.A., M.K., and T.O. analysed the data; J.C., R.S., E.I.S., and W.N. co-wrote the paper.

Corresponding authors

Correspondence to Edward I. Solomon or Wonwoo Nam.

Supplementary information

Supplementary information

Supplementary information (PDF 777 kb)

Supplementary information

Crystallographic information for compound 1 (CIF 18 kb)

Supplementary information

Crystallographic information for compound 3 (CIF 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cho, J., Sarangi, R., Annaraj, J. et al. Geometric and electronic structure and reactivity of a mononuclear ‘side-on’ nickel(iii)–peroxo complex. Nature Chem 1, 568–572 (2009).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing