Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An efficient approach to chiral fullerene derivatives by catalytic enantioselective 1,3-dipolar cycloadditions


Fullerene chirality is an important but undeveloped issue of paramount interest in fields such as materials science and medicinal chemistry. So far, enantiopure fullerene derivatives have been made from chiral starting materials or obtained by separating racemic mixtures. Here, we report the enantioselective catalytic synthesis of chiral pyrrolidinofullerenes (the most widely studied fullerene derivatives), which proceeds in high yields under very mild conditions at low temperatures. The combination of a particular metal catalyst—Ag(I) or Cu(II)—and a chiral ligand is able to direct the cycloaddition of buckminsterfullerene C60, the first non-coordinating dipolarophile used in such reactions, to opposite enantiofaces of N-metallated azomethine ylides. This methodology has proven to be quite general, affording enantiomeric excesses of greater than 90%. Furthermore, well-defined chiral carbon atoms linked to the fullerene sphere are able to perturb the inherent symmetry of the fullerene π-system as revealed by circular dichroism measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: N-metallated azomethine ylide complexes, prepared from a chiral ligand, a metal salt, an imino-ester and a base, are able to cycloadd to a non-coordinating dipolarophile such as the all-carbon sphere C60.
Figure 2: Catalytic metal–ligand complexes allow the cycloaddidion of the iminoesters 1a–g to C60 under mild conditions.
Figure 3: Circular dichroism and UV spectra of fulleropyrrolidines 2a–d (concentration, 4 × 10−4 M in toluene).
Figure 4: Proposed concerted versus stepwise mechanism for the stereochemical outcome observed from the metal–ligand–iminoester complex.

Similar content being viewed by others


  1. The Chemistry of Fullerenes (ed. Hirsch, A.) (Wiley-VCH, 2005).

  2. Fullerenes: From Synthesis to Optoelectronic Properties (eds. Guldi, D. M., Martín, N.) (Kluwer Academic Publishers, 2002).

  3. Martín, N. New challenges in fullerene chemistry. Chem. Commun. 2093–2104 (2006).

  4. Thilgen, C. & Diederich, F. Structural aspects of fullerene chemistry: a journey through fullerene chirality. Chem. Rev. 106, 5049–5135 (2006).

    Article  CAS  Google Scholar 

  5. Thilgen, C., Gosse, I. & Diederich, F. Chirality in fullerene chemistry. Top. Stereochem. 23, 1–124 (2003).

    CAS  Google Scholar 

  6. Friedman, S. H., Ganapathi, P. S., Rubin, Y. & Kenyon, G. L. Optimizing the binding of fullerene inhibitors of the HIV-1 protease through predicted increases in hydrophobic desolvation. J. Med. Chem. 41, 2424–2429 (1998).

    Article  CAS  Google Scholar 

  7. Nishimura, T. et al. Macromolecular helicity induction on a poly(phenylacetylene) with C2-symmetric chiral [60]fullerene-bisadducts. J. Am. Chem. Soc. 126, 11711–11717 (2004).

    Article  CAS  Google Scholar 

  8. Bianco, A. et al. Synthesis, chiroptical properties, and configurational assignment of fulleroproline derivatives and peptides. J. Am. Chem. Soc. 118, 4072–4080 (1996).

    Article  CAS  Google Scholar 

  9. Illescas, B. et al. Diastereoselective synthesis of fulleropyrrolidines from suitably functionalized chiral cyclobutanes. J. Org. Chem. 70, 6929–6932 (2005).

    Article  CAS  Google Scholar 

  10. Djojo, F. & Hirsch, A. Synthesis and chiroptical properties of enantiomerically pure bis- and trisadducts of C60 with an inherent chiral addition pattern. Chem. Eur. J. 4, 344–356 (1998).

    Article  CAS  Google Scholar 

  11. Hawkins, J. M., Meyer, A. & Nambu, M. Asymmetric bisosmylation of C60: novel chiral π-systems. J. Am. Chem. Soc. 115, 9844–9845 (1993).

    Article  CAS  Google Scholar 

  12. Vasella, A., Uhlmann, P., Waldraff, C. A. A., Diederich, F. & Thilgen, C. Fullerene sugars: preparation of enantiomerically pure, spiro-linked C-glycosides of C60 . Angew. Chem. Int. Ed. Engl. 31, 1388–1390 (1992).

    Article  Google Scholar 

  13. Nájera, C. & Sansano, J. M. Catalytic enantioselective 1,3-dipolar cycloaddition reaction of azomethine ylides and alkenes: the direct strategy to prepare enantioenriched highly substituted proline derivatives. Angew. Chem. Int. Ed. 44, 6272–6276 (2005).

    Article  Google Scholar 

  14. Pandey, G., Banerjee, P. & Gadre, S. R. Construction of enantiopure pyrrolidine ring system via asymmetric [3 + 2]-cycloaddition of azomethine ylides. Chem. Rev. 106, 4484–4517 (2006).

    Article  CAS  Google Scholar 

  15. Gothelf, K. V. & Jørgensen, K. A. Asymmetric 1,3-dipolar cycloaddition reactions. Chem. Rev. 98, 863–909 (1998).

    Article  CAS  Google Scholar 

  16. Maggini, M., Scorrano, G. & Prato, M. Addition of azomethine ylides to C60: synthesis, characterization, and functionalization of fullerene pyrrolidines. J. Am. Chem. Soc. 115, 9798–9799 (1993).

    Article  CAS  Google Scholar 

  17. Martín, N. et al. Retro-cycloaddition reaction of pyrrolidinofullerenes. Angew. Chem. Int. Ed. 45, 110–114 (2006).

    Article  Google Scholar 

  18. Pantarotto, D. et al. Solid-phase synthesis of fullerene-peptides. J. Am. Chem. Soc. 124, 12543–12549 (2002).

    Article  CAS  Google Scholar 

  19. Longmire, J. M., Wang, B. & Zhang, X. Highly enantioselective Ag(I)-catalyzed [3 + 2] cycloaddition of azomethine ylides. J. Am. Chem. Soc. 124, 13400–13401 (2002).

    Article  CAS  Google Scholar 

  20. Chen, C., Li, X. & Schreiber, S. L. Catalytic asymmetric [3 + 2] cycloaddition of azomethine ylides. Development of a versatile stepwise, three-component reaction for diversity-oriented synthesis. J. Am. Chem. Soc. 125, 10174–10175 (2003).

    Article  CAS  Google Scholar 

  21. Cabrera, S., Gómez-Arrayás, R., Carretero, J. C. Highly enantioselective copper(I)-fesulphos-catalyzed 1,3-dipolar cycloaddition of azomethine ylides. J. Am. Chem. Soc. 127, 16394–16395 (2005).

    Article  CAS  Google Scholar 

  22. Yan, X. X. et al. A highly enantio- and diastereoselective Cu-catalyzed 1,3-dipolar cycloaddition of azomethine ylides with nitroalkenes. Angew. Chem. Int. Ed. 45, 1979–1983 (2006).

    Article  CAS  Google Scholar 

  23. Gothelf, A. S., Gothelf, K. V., Hazell, R. G. & Jørgensen, K. A. Catalytic asymmetric 1,3-dipolar cycloaddition reactions of azomethine ylides—a simple approach to optically active highly functionalized proline derivatives. Angew. Chem. Int. Ed. 41, 4236–4238 (2002).

    Article  CAS  Google Scholar 

  24. Wang, C. J., Liang, G., Xue, Z. Y. & Gao, F. Highly enantioselective 1,3-dipolar cycloaddition of azomethine ylides catalyzed by copper(I)/TF-BiphamPhos complexes. J. Am. Chem. Soc. 130, 17250–17251 (2008).

    Article  CAS  Google Scholar 

  25. Nájera, C., Retamosa, M. G. & Sansano, J. M. Catalytic enantioselective 1,3-dipolar cycloaddition reactions of azomethine ylides and alkenes by using Phosphoramidite–Silver(I) complexes. Angew. Chem. Int. Ed. 47, 6055–6058 (2008).

    Article  Google Scholar 

  26. Wilson, S. R. et al. Chiral non-racemic C60 derivatives: a proposed sector rule for fullerene absolute configuration. Tetrahedron 52, 5131–5142 (1996).

    Article  CAS  Google Scholar 

  27. Tan, X., Schuster D. I. & Wilson, S. R. Resolution and absolute configuration of a C2-symmetryc trans-2,5-disubstituted fulleropyrrolidine. Tetrahedron Lett. 39, 4187–4190 (1998).

    Article  CAS  Google Scholar 

  28. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds, Ch 12 (Wiley, 1994).

    Google Scholar 

  29. Oderaotoshi, Y. et al. Exo- and enantioselective cycloaddition of azomethine ylides generated from N-alkylidene glycine esters using chiral phosphine-copper complexes. Org. Lett. 5, 5043–5046 (2003).

    Article  CAS  Google Scholar 

  30. Vivanco, S. et al. Origins of the loss of concertedness in pericyclic reactions: theoretical prediction and direct observation of stepwise mechanism in [3 + 2] thermal cycloaddition. J. Am. Chem. Soc. 122, 6078–6092 (2000).

    Article  CAS  Google Scholar 

  31. Houk, K., Gonzalez, J. & Li, Y. Pericyclic reaction transition states: passions and punctilios 1935–1995. Acc. Chem. Res. 28, 81–90 (1995).

    Article  CAS  Google Scholar 

Download references


This work was supported by the MICINN of Spain (project CT2008-00795/BQU and Consolider-Ingenio 2010C-07-25200) and the CAM (project P-PPQ-000225-0505). S.F. thanks the MICINN for a Ramón y Cajal contract, and E.E.M. thanks the MICINN for a Doctoral Fellowship.

Author information

Authors and Affiliations



N.M. and S.F. conceived and designed the experiments; E.M. and M.S. performed the experiments; A.M. analysed the data; N.M. and S.F. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Nazario Martín.

Supplementary information

Supplementary information

Supplementary information (PDF 3669 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippone, S., Maroto, E., Martín-Domenech, Á. et al. An efficient approach to chiral fullerene derivatives by catalytic enantioselective 1,3-dipolar cycloadditions. Nature Chem 1, 578–582 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing