Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Total synthesis and study of 6-deoxyerythronolide B by late-stage C–H oxidation

Abstract

Among the frontier challenges in chemistry in the twenty-first century are the interconnected goals of increasing synthetic efficiency and diversity in the construction of complex molecules. Oxidation reactions of C–H bonds, particularly when applied at late stages of complex molecule syntheses, hold special promise for achieving both these goals. Here we report a late-stage C–H oxidation strategy in the total synthesis of 6-deoxyerythronolide B (6-dEB), the aglycone precursor to the erythromycin antibiotics. An advanced intermediate is cyclized to give the 14-membered macrocyclic core of 6-dEB using a late-stage (step 19 of 22) C–H oxidative macrolactonization reaction that proceeds with high regio-, chemo- and diastereoselectivity (>40:1). A chelate-controlled model for macrolactonization predicted the stereochemical outcome of C–O bond formation and guided the discovery of conditions for synthesizing the first diastereomeric 13-epi-6-dEB precursor. Overall, this C–H oxidation strategy affords a highly efficient and stereochemically versatile synthesis of the erythromycin core.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macrocyclization approaches to macrolide antibiotics.
Figure 2: Synthesis of C–H macrolactonization precursor 2.
Figure 3: Synthesis of macrolides 1 and epi-1.
Figure 4: Synthesis of 6-deoxyerythronolide B.

Similar content being viewed by others

References

  1. Fraunhoffer, K. J., Bachovchin, D. A. & White, M. C. Hydrocarbon oxidation vs. C–C bond-forming approaches for efficient synthesis of oxygenated molecules. Org. Lett. 7, 223–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, M. S. & White, M. C. A predictably selective aliphatic C–H oxidation reaction for complex molecule synthesis. Science 318, 783–787 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Das, S., Incarvito, C. D., Crabtree, R. H. & Brudvig, G. W. Molecular recognition in the selective oxygenation of saturated C–H bonds by a dimanganese catalyst. Science 312, 1941–1943 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Yang, J., Gabriele, B., Belvedere, S., Huang, Y. & Breslow, R. Catalytic oxidations of steroid substrates by artificial cytochrome P-450 enzymes. J. Org. Chem. 67, 5057–5067 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Wender, P. A., Hilinski, M. K. & Mayweg, A. V. W. Late-stage intermolecular C–H activation for lead diversification: a highly chemoselective oxyfunctionalization of the C-9 position of potent bryostatin analogues. Org. Lett. 7, 79–82 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Nicolaou, K. C. et al. Total synthesis of taxol. Nature 367, 630–634 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Wender, P. A. et al. The first synthesis of a daphnane diterpene: the enantiocontrolled total synthesis of (+)-resiniferatoxin. J. Am. Chem. Soc. 119, 12976–12977 (1997).

    Article  CAS  Google Scholar 

  8. Hinman, A. & Du Bois, J. A stereoselective synthesis of (–)-tetrodotoxin. J. Am. Chem. Soc. 125, 11510–11511 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Davies, H. M. L., Dai, X. & Long, M. S. Combined C–H activation/Cope rearrangement as a strategic reaction in organic synthesis: total synthesis of (–)-colombiasin A and (–)-elisapterosin B. J. Am. Chem. Soc. 128, 2485–2490 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Paterson, I. & Mansuri, M. M. Recent developments in the total synthesis of macrolide antibiotics. Tetrahedron 41, 3569–3624 (1985).

    Article  CAS  Google Scholar 

  11. Paterson, I. & Rawson, D. J. Studies in macrolide synthesis: a highly stereoselective synthesis of (+)-(9S)-dihydroerythronolide A using macrocyclic stereocontrol. Tetrahedron Lett. 30, 7463–7466 (1989).

    Article  CAS  Google Scholar 

  12. Corey, E. J. et al. Total synthesis of erythromycins. 4. Total synthesis of erythronolide B. J. Am. Chem. Soc. 100, 4620–4622 (1978).

    Article  CAS  Google Scholar 

  13. Woodward, R. B. et al. Asymmetric total synthesis of erythromycin. 1. Synthesis of an erythronolide A seco acid derivative via asymmetric induction. J. Am. Chem. Soc. 103, 3210–3213 (1981).

    Article  Google Scholar 

  14. Breton, P. et al. Total synthesis of erythromycin B. Tetrahedron 63, 5709–5729 (2007).

    Article  CAS  Google Scholar 

  15. Masamune, S., Hirama, M., Mori, S., Ali, S. A. & Garvey, D. S. Total synthesis of 6-deoxyerythronolide B. J. Am. Chem. Soc. 103, 1568–1571 (1981).

    Article  CAS  Google Scholar 

  16. Myles, D. C., Danishefsky, S. J. & Schulte, G. Development of a fully synthetic stereoselective route to 6-deoxyerythronolide B by reiterative applications of the Lewis Acid catalyzed diene aldehyde cyclocondensation reaction: a remarkable instance of diastereofacial selectivity. J. Org. Chem. 55, 1636–1648 (1990).

    Article  CAS  Google Scholar 

  17. Evans, D. A., Kim, A. S., Metternich, R. & Novack, V. J. General strategies toward the syntheses of macrolide antibiotics. The total syntheses of 6-deoxyerythronolide B and oleandolide. J. Am. Chem. Soc. 120, 5921–5942 (1998).

    Article  CAS  Google Scholar 

  18. Crimmons, M. T. & Slade, D. J. Formal synthesis of 6-deoxyerythronolide B. Org. Lett. 8, 2191–2194 (2006).

    Article  Google Scholar 

  19. Staunton, J. & Wilkinson, B. Biosynthesis of erythromycin and rapamycin. Chem. Rev. 97, 2611–2629 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Celmer, W. D. Stereochemical problems in macrolide antibiotics. Pure Appl. Chem. 28, 413–453 (1971).

    Article  CAS  PubMed  Google Scholar 

  21. Corey, E. J. & Cheng, X. M. The Logic of Chemical Synthesis (Wiley, 1995).

    Google Scholar 

  22. Fraunhoffer, K. J., Prabagaran, N., Sirois, L. E. & White, M. C. Macrolactonization via hydrocarbon oxidation. J. Am. Chem. Soc. 128, 9032–9033 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Myers, A. G. et al. Pseudoephedrine as a practical chiral auxiliary for the synthesis of highly enantiomerically enriched carboxylic acids, alcohols, aldehydes, and ketones. J. Am. Chem. Soc. 119, 6496–6511 (1997).

    Article  CAS  Google Scholar 

  24. Evans, D. A., Bartroli, J. & Shih, T. L. Enantioselective aldol condensations. 2. Erythro-selective chiral aldol condensations via boron enolates. J. Am. Chem. Soc. 103, 2127–2129 (1981).

    Article  CAS  Google Scholar 

  25. Stork, G. & Rychnovsky, S. D. Concise total synthesis of (+)-(9S)-dihydroerythronolide A. J. Am. Chem. Soc. 109, 1565–1567 (1987).

    Article  CAS  Google Scholar 

  26. Evans, D. A. et al. Enantioselective Michael reactions. Diastereoselective reactions of chlorotitanium enolates of chiral N-acyloxazolidinones with representative electrophilic olefins. J. Org. Chem. 56, 5750–5752 (1991).

    Article  CAS  Google Scholar 

  27. Bäckvall, J.-E., Byström, S. E. & Nordberg, R. E. Stereo- and regioselective palladium-catalyzed 1,4-diacetoxylation of 1,3-dienes. J. Org. Chem. 49, 4619–4631 (1984).

    Article  Google Scholar 

  28. Burckhardt, U., Baumann, M. & Togni, A. A remarkable anion effect on the enantioselectivity of the Pd-catalyzed allylic amination using ferrocenyl ligands. Tetrahedron Asymmetry 8, 155–159 (1997).

    Article  CAS  Google Scholar 

  29. Inanaga, J., Hirata, K., Saeki, H., Katsuki, T. & Yamaguchi, M. A rapid esterification by means of mixed anhydride and its application to large-ring lactonization. Bull. Chem. Soc. Jpn 52, 1989–1993 (1979).

    Article  CAS  Google Scholar 

  30. Fischbach, M. A. & Walsh, C. T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Castonguay, R., He, W., Chen, A. Y., Khosla, C. & Cane, D. E. Stereospecificity of ketoreductase domains of the 6-deoxyerythronolide B synthase. J. Am. Chem. Soc. 129, 13758–13769 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Katz, L. & Ashley, G. W. Translation and protein synthesis: macrolides. Chem. Rev. 105, 499–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Burke, M. D. & Schreiber, S. L. A planning strategy for diversity-oriented synthesis. Angew. Chem. Int. Ed. 43, 46–58 (2004).

    Article  Google Scholar 

  34. Balskus, E.P. & Jacobsen, E. N. Asymmetric catalysis of the transannular Diels–Alder reaction. Science 317, 1736–1740 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Lewis, C. A. & Miller, S. J. Site-selective derivatization and remodeling of erythromycin A by using simple peptide-based chiral catalysts. Angew. Chem. Int. Ed. 45, 5616–5619 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Institutes of Health/National Institute of General Medicine (grant no. GM076153), Eli Lilly, Bristol-Myers Squibb, Pfizer and Amgen. E.M.S. is the recipient of a R. C. Fuson graduate fellowship, Pfizer graduate fellowship and the Roche Excellence in Chemistry Award. We thank Professor Jerome Baudry for assisting with the molecular modelling studies, D. J. Covell for his insight into π-allyl-Pd fluoride complexes and I. Patterson and P. B. Dervan for discussions.

Author information

Authors and Affiliations

Authors

Contributions

E.M.S. and M.C.W. conceived and designed the experiments, E.M.S. performed the experiments and E.M.S. and M.C.W. co-wrote the paper.

Corresponding author

Correspondence to M. Christina White.

Supplementary information

Supplementary information

Supplementary information (PDF 1932 kb)

Supplementary information

Supplementary information (PDF 4697 kb)

Supplementary information

Crystallographic information for compound 13 (CIF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stang, E., Christina White, M. Total synthesis and study of 6-deoxyerythronolide B by late-stage C–H oxidation. Nature Chem 1, 547–551 (2009). https://doi.org/10.1038/nchem.351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.351

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing