Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A bonding model for gold(I) carbene complexes

Abstract

The last decade has witnessed dramatic growth in the number of reactions catalysed by electrophilic gold complexes. Although proposed mechanisms often invoke the intermediacy of gold-stabilized cationic species, the nature of bonding in these intermediates remains unclear. Herein, we propose that the carbon–gold bond in these intermediates comprises varying degrees of both σ- and π-bonding; however, the overall bond order is generally less than or equal to one. The bonding in a given gold-stabilized intermediate, and the position of this intermediate on a continuum ranging from gold-stabilized singlet carbene to gold-coordinated carbocation is dictated by the carbene substituents and the ancillary ligand. Experiments show that the correlation between bonding and reactivity is reflected in the yield of gold-catalysed cyclopropanation reactions.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Calculated and experimental activation energies to bond rotation (indicated with arrows).
Figure 2: Structural and electronic comparison of cationic metal-free and [AuPMe3]+ substituted substrates.
Figure 3: Experimental and theoretical comparison for the carbene reactivity of the substrate with different ancillary ligands.
Figure 4: Arrow pushing in the formation of gold-stabilized carbenes.

References

  1. Gorin, D. J., Sherry, B. D. & Toste, F. D. Ligand effects in homogeneous Au catalysis. Chem. Rev. 108, 3351–3378 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Hashmi, A. S. K. Gold-catalyzed organic reactions. Chem. Rev. 107, 3180–3211 (2007).

    CAS  Article  PubMed  Google Scholar 

  3. Fürstner, A. & Davies, P. W. Catalytic carbophilic activation: catalysis by platinum and gold π acids. Angew. Chem. Int. Ed. 46, 3410–3449 (2008).

    Article  Google Scholar 

  4. Jiménez-Núñez, E. & Echavarren, A. M. Gold-catalyzed cycloisomerizations of enynes: a mechanistic perspective. Chem. Rev. 108, 3326–3350 (2008).

    Article  PubMed  Google Scholar 

  5. Gorin, D. J. & Toste, F. D. Relativistic effects in homogeneous gold catalysis. Nature 446, 395–403 (2007).

    CAS  Article  PubMed  Google Scholar 

  6. Fedorov, A., Moret, M. E. & Chen, P. Gas-phase synthesis and reactivity of a gold carbene complex. J. Am. Chem. Soc. 130, 8880–8881 (2008).

    CAS  Article  PubMed  Google Scholar 

  7. Hashmi, A. S. K. High noon in gold catalysis: Carbene versus carbocation intermediates. Angew. Chem. Int. Ed. 47, 6754–6756 (2008).

    CAS  Article  Google Scholar 

  8. Correa, A. et al. Golden carousel in catalysis: the cationic gold/propargylic ester cycle. Angew. Chem. Int. Ed. 47, 718–721 (2008).

    CAS  Article  Google Scholar 

  9. Fürstner, A. & Morency, L. On the nature of the reactive intermediates in gold-catalyzed cycloisomerization reactions. Angew. Chem. Int. Ed. 47, 5030–5033 (2008).

    Article  Google Scholar 

  10. Seidel, G., Mynott, R. & Fürstner, A. Elementary steps of gold catalysis: NMR spectroscopy reveals the highly cationic character of a “gold carbenoid.” Angew. Chem. Int. Ed. 48, 2510–2513 (2009).

    CAS  Article  Google Scholar 

  11. Johansson, M. J., Gorin, D. J., Staben, S. T. & Toste, F. D. Gold(I)-catalyzed stereoselective olefin cyclopropanation. J. Am. Chem. Soc. 127, 18002–18003 (2005).

    CAS  Article  PubMed  Google Scholar 

  12. Horino, Y., Yamamoto, T., Ueda, K., Kuroda, S. & Toste, F. D. Au(I)-catalyzed cycloisomerizations terminated by sp3 C–H bond insertion. J. Am. Chem. Soc. 131, 2809–2811 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Lemière, G. et al. Generation and trapping of cyclopentenylidene gold species: four pathways to polycyclic compounds. J. Am. Chem. Soc. 131, 2993–3006 (2009).

    Article  PubMed  Google Scholar 

  14. Fructos, M. R. et al. A gold catalyst for carbene-transfer reactions from ethyl diazoacetate. Angew. Chem. Int. Ed. 44, 5284–5288 (2005).

    CAS  Article  Google Scholar 

  15. López, S., Herrero-Gómez, E., Pérez-Galán, P., Nieto-Oberhuber, C. & Echavarren, A. M. Gold(I)-catalyzed intermolecular cyclopropanation of enynes with alkenes: trapping of two different gold carbenes. Angew. Chem. Int. Ed. 45, 6029–6032 (2005).

    Article  Google Scholar 

  16. Fedorov, A. & Chen, P. Electronic effects in the reactions of olefin-coordinated gold carbene complexes. Organometallics 28, 1278–1281 (2009).

    CAS  Article  Google Scholar 

  17. Sheehan, S. M., Padwa, A. & Snyder, J. P. Dirhodium(II) tetracarboxylate carbenoids as catalytic intermediates. Tetrahedron Lett. 39, 949–952 (1998).

    CAS  Article  Google Scholar 

  18. Doyle, M. P. Electrophilic metal carbenes as reaction intermediates in catalytic reactions. Acc. Chem. Res. 19, 348–356 (1986).

    CAS  Article  Google Scholar 

  19. Nowlan, D. T., Gregg, T. M., Davies, H. M. L. & Singleton, D. A. Isotope effects and the nature of selectivity in rhodium-catalyzed cyclopropanations. J. Am. Chem. Soc. 125, 15902–15911 (2004).

    Article  Google Scholar 

  20. Zhao, Y. & Truhlar, D. G., Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008).

    CAS  Article  PubMed  Google Scholar 

  21. Truhlar, D. G. Molecular modeling of complex chemical systems. J. Am. Chem. Soc. 130, 16824–16827 (2008).

    CAS  Article  PubMed  Google Scholar 

  22. Zhao, Y. & Truhlar, D. G. Benchmark energetic data in a model system for Grubbs II metathesis catalysis and their use for the development, assessment, and validation of electronic structure methods. J. Chem. Theory Comput. 5, 324–333 (2009).

    CAS  Article  PubMed  Google Scholar 

  23. Reed, A. E., Curtiss, L. A. & Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88, 899–926 (1988).

    CAS  Article  Google Scholar 

  24. Irikura, K. K. & Goddard III, W. A. Energetics of third-row transition metal methylidene ions MCH2+ (M = La, Hf, Ta, W, Re, Os, Ir, Pt, Au). J. Am. Chem. Soc. 116, 8733–8740 (1994).

    CAS  Article  Google Scholar 

  25. Padwa, A. & Austin, D. J. Ligand effects on the chemoselectivity of transition metal catalyzed reactions of α-diazo carbonyl compounds. Angew. Chem. Int. Ed. Engl. 33, 1797–1815 (1994).

    Article  Google Scholar 

  26. Dewar, M. A review of the π-complex theory. Bull. Soc. Chim. Fr. 18, C71–C77 (1951).

    Google Scholar 

  27. Chatt, J. & Duncanson L. A. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes. J. Chem. Soc. 2939–2947 (1953).

  28. Landis, C. R. & Weinhold, F. Valence and extra-valence orbitals in main group and transition metal bonding. J. Comput. Chem. 28, 198–203 (2007).

    CAS  Article  PubMed  Google Scholar 

  29. Mamane, V., Gress, T., Krause, H. & Fürstner, A. Platinum- and gold-catalyzed cycloisomerization reactions of hydroxylated enynes. J. Am. Chem. Soc. 126, 8654–8655 (2004).

    CAS  Article  PubMed  Google Scholar 

  30. Luzung, M. R., Markham, J. P. & Toste, F. D. Catalytic isomerization of 1,5-enynes to bicyclo[3.1.0]hexenes. J. Am. Chem. Soc. 126, 10858–10859 (2004).

    CAS  Article  PubMed  Google Scholar 

  31. Gorin, D. J. Davis, N. R. & Toste, F. D. Gold(I)-catalyzed intramolecular acetylenic Schmidt reaction. J. Am. Chem. Soc. 127, 1126–1127 (2005).

    Article  Google Scholar 

  32. Nieto-Oberhuber, C., Muñoz, M. P., Buñuel, E., Nevado, C., Cárdenas, D. J. & Echavarren, A. M. Cationic gold(I) complexes: highly alkynophilic catalysts for the exo- and endo-cyclization of enynes. Angew. Chem. Int. Ed. 43, 2402–2406 (2004).

    CAS  Article  Google Scholar 

  33. Shapiro, N. D. & Toste, F. D. Rearrangement of alkynyl sulfoxides catalyzed by gold(I) complexes. J. Am. Chem. Soc. 129, 4160–4161 (2007).

    CAS  Article  PubMed  Google Scholar 

  34. Zhang, G. & Zhang, L. Au-containing all-carbon 1,3-dipoles: generation and [3 + 2] cycloaddition reactions. J. Am. Chem. Soc. 130, 12598–12599 (2008).

    CAS  Article  PubMed  Google Scholar 

  35. Snyder, J. P. et al. A stable dirhodium tetracarboxylate carbenoid: crystal structure, bonding analysis, and catalysis. J. Am. Chem. Soc. 123, 11318–11319 (2001).

    CAS  Article  PubMed  Google Scholar 

  36. Costantino, G., Rovito, R., Macchiarulo, A. & Pellicciari, R. Structure of metal–carbenoid intermediates derived from the dirhodium(II)tetracarboxylate mediated decomposition of α-diazocarbonyl compounds: a DFT study. J. Mol. Struct. Theochem, 581, 111 (2002).

    CAS  Article  Google Scholar 

  37. Amijs, C. H. M., López-Carrillo, V. & Echavarren, A. M. Gold-catalyzed addition of carbon nucleophiles to propargyl carboxylates. Org. Lett. 9, 4021–4024 (2007).

    CAS  Article  PubMed  Google Scholar 

  38. Davies, P. W. Albrecht, S. J.-C. Alkynes as masked ylides: gold-catalysed intermolecular reactions of propargylic carboxylates with sulfides. Chem. Commun. 238–240 (2008).

  39. Nieto-Oberhuber, C. et al. Gold(I)-catalyzed cyclizations of 1,6-enynes: alkoxycyclizations and exo/endo skeletal rearrangements. Chem. Eur. J. 12, 1677–1693 (2006).

    CAS  Article  PubMed  Google Scholar 

  40. Jaguar 7.6 (Schrodinger, New York, 2006).

  41. Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations—potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310 (1985).

    CAS  Article  Google Scholar 

  42. Martin, J. M. L. & Sundermann, A. Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials: The atoms Ga-Kr and In-Xe. J. Chem. Phys. 114, 3408–3420 (2001).

    CAS  Article  Google Scholar 

  43. Krishnan, R., Binkley, J. S., Seeger, R. & Pople, J. A. Self-consistent molecular-orbital methods. XX. A basis set for correlated wave-functions. J. Chem. Phys. 72, 650–654 (1980).

    CAS  Article  Google Scholar 

  44. Frisch, M. J., Pople, J. A. & Binkley, J. S. Self-consistent molecular-orbital methods 25. Supplementary functions for Gaussian-basis sets. J. Chem. Phys. 80, 3265–3269 (1984).

    CAS  Article  Google Scholar 

  45. Tannor, D. J. et al. Accurate first principles calculation of molecular charge-distributions and solvation energies from ab-initio quantum-mechanics and continuum dielectric theory. J. Am. Chem. Soc. 116, 11875–11882 (1994).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

F.D.T. acknowledges NIHGMS, Bristol-Myers Squibb and Novartis for funding, and J. Matthey for the donation of AuCl3. The MSC computational facilities were funded by grants from ARO-DURIP and ONR-DURIP. D.B. and E.T. thank R. Nielsen for useful suggestions.

Author information

Authors and Affiliations

Authors

Contributions

D.B., N.D.S. and F.D.T. originated the idea and wrote the manuscript, N.D.S. and Y.W. performed the experiments, D.B. and E.T. performed the calculations, all authors contributed to discussions and edited the manuscript. D.B. and N.D.S. contributed equally to this work.

Corresponding author

Correspondence to F. Dean Toste.

Supplementary information

Supplementary information

Supplementary information (PDF 518 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Benitez, D., Shapiro, N., Tkatchouk, E. et al. A bonding model for gold(I) carbene complexes. Nature Chem 1, 482–486 (2009). https://doi.org/10.1038/nchem.331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.331

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing