A bonding model for gold(I) carbene complexes


The last decade has witnessed dramatic growth in the number of reactions catalysed by electrophilic gold complexes. Although proposed mechanisms often invoke the intermediacy of gold-stabilized cationic species, the nature of bonding in these intermediates remains unclear. Herein, we propose that the carbon–gold bond in these intermediates comprises varying degrees of both σ- and π-bonding; however, the overall bond order is generally less than or equal to one. The bonding in a given gold-stabilized intermediate, and the position of this intermediate on a continuum ranging from gold-stabilized singlet carbene to gold-coordinated carbocation is dictated by the carbene substituents and the ancillary ligand. Experiments show that the correlation between bonding and reactivity is reflected in the yield of gold-catalysed cyclopropanation reactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Calculated and experimental activation energies to bond rotation (indicated with arrows).
Figure 2: Structural and electronic comparison of cationic metal-free and [AuPMe3]+ substituted substrates.
Figure 3: Experimental and theoretical comparison for the carbene reactivity of the substrate with different ancillary ligands.
Figure 4: Arrow pushing in the formation of gold-stabilized carbenes.


  1. 1

    Gorin, D. J., Sherry, B. D. & Toste, F. D. Ligand effects in homogeneous Au catalysis. Chem. Rev. 108, 3351–3378 (2008).

  2. 2

    Hashmi, A. S. K. Gold-catalyzed organic reactions. Chem. Rev. 107, 3180–3211 (2007).

  3. 3

    Fürstner, A. & Davies, P. W. Catalytic carbophilic activation: catalysis by platinum and gold π acids. Angew. Chem. Int. Ed. 46, 3410–3449 (2008).

  4. 4

    Jiménez-Núñez, E. & Echavarren, A. M. Gold-catalyzed cycloisomerizations of enynes: a mechanistic perspective. Chem. Rev. 108, 3326–3350 (2008).

  5. 5

    Gorin, D. J. & Toste, F. D. Relativistic effects in homogeneous gold catalysis. Nature 446, 395–403 (2007).

  6. 6

    Fedorov, A., Moret, M. E. & Chen, P. Gas-phase synthesis and reactivity of a gold carbene complex. J. Am. Chem. Soc. 130, 8880–8881 (2008).

  7. 7

    Hashmi, A. S. K. High noon in gold catalysis: Carbene versus carbocation intermediates. Angew. Chem. Int. Ed. 47, 6754–6756 (2008).

  8. 8

    Correa, A. et al. Golden carousel in catalysis: the cationic gold/propargylic ester cycle. Angew. Chem. Int. Ed. 47, 718–721 (2008).

  9. 9

    Fürstner, A. & Morency, L. On the nature of the reactive intermediates in gold-catalyzed cycloisomerization reactions. Angew. Chem. Int. Ed. 47, 5030–5033 (2008).

  10. 10

    Seidel, G., Mynott, R. & Fürstner, A. Elementary steps of gold catalysis: NMR spectroscopy reveals the highly cationic character of a “gold carbenoid.” Angew. Chem. Int. Ed. 48, 2510–2513 (2009).

  11. 11

    Johansson, M. J., Gorin, D. J., Staben, S. T. & Toste, F. D. Gold(I)-catalyzed stereoselective olefin cyclopropanation. J. Am. Chem. Soc. 127, 18002–18003 (2005).

  12. 12

    Horino, Y., Yamamoto, T., Ueda, K., Kuroda, S. & Toste, F. D. Au(I)-catalyzed cycloisomerizations terminated by sp3 C–H bond insertion. J. Am. Chem. Soc. 131, 2809–2811 (2009).

  13. 13

    Lemière, G. et al. Generation and trapping of cyclopentenylidene gold species: four pathways to polycyclic compounds. J. Am. Chem. Soc. 131, 2993–3006 (2009).

  14. 14

    Fructos, M. R. et al. A gold catalyst for carbene-transfer reactions from ethyl diazoacetate. Angew. Chem. Int. Ed. 44, 5284–5288 (2005).

  15. 15

    López, S., Herrero-Gómez, E., Pérez-Galán, P., Nieto-Oberhuber, C. & Echavarren, A. M. Gold(I)-catalyzed intermolecular cyclopropanation of enynes with alkenes: trapping of two different gold carbenes. Angew. Chem. Int. Ed. 45, 6029–6032 (2005).

  16. 16

    Fedorov, A. & Chen, P. Electronic effects in the reactions of olefin-coordinated gold carbene complexes. Organometallics 28, 1278–1281 (2009).

  17. 17

    Sheehan, S. M., Padwa, A. & Snyder, J. P. Dirhodium(II) tetracarboxylate carbenoids as catalytic intermediates. Tetrahedron Lett. 39, 949–952 (1998).

  18. 18

    Doyle, M. P. Electrophilic metal carbenes as reaction intermediates in catalytic reactions. Acc. Chem. Res. 19, 348–356 (1986).

  19. 19

    Nowlan, D. T., Gregg, T. M., Davies, H. M. L. & Singleton, D. A. Isotope effects and the nature of selectivity in rhodium-catalyzed cyclopropanations. J. Am. Chem. Soc. 125, 15902–15911 (2004).

  20. 20

    Zhao, Y. & Truhlar, D. G., Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008).

  21. 21

    Truhlar, D. G. Molecular modeling of complex chemical systems. J. Am. Chem. Soc. 130, 16824–16827 (2008).

  22. 22

    Zhao, Y. & Truhlar, D. G. Benchmark energetic data in a model system for Grubbs II metathesis catalysis and their use for the development, assessment, and validation of electronic structure methods. J. Chem. Theory Comput. 5, 324–333 (2009).

  23. 23

    Reed, A. E., Curtiss, L. A. & Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88, 899–926 (1988).

  24. 24

    Irikura, K. K. & Goddard III, W. A. Energetics of third-row transition metal methylidene ions MCH2+ (M = La, Hf, Ta, W, Re, Os, Ir, Pt, Au). J. Am. Chem. Soc. 116, 8733–8740 (1994).

  25. 25

    Padwa, A. & Austin, D. J. Ligand effects on the chemoselectivity of transition metal catalyzed reactions of α-diazo carbonyl compounds. Angew. Chem. Int. Ed. Engl. 33, 1797–1815 (1994).

  26. 26

    Dewar, M. A review of the π-complex theory. Bull. Soc. Chim. Fr. 18, C71–C77 (1951).

  27. 27

    Chatt, J. & Duncanson L. A. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes. J. Chem. Soc. 2939–2947 (1953).

  28. 28

    Landis, C. R. & Weinhold, F. Valence and extra-valence orbitals in main group and transition metal bonding. J. Comput. Chem. 28, 198–203 (2007).

  29. 29

    Mamane, V., Gress, T., Krause, H. & Fürstner, A. Platinum- and gold-catalyzed cycloisomerization reactions of hydroxylated enynes. J. Am. Chem. Soc. 126, 8654–8655 (2004).

  30. 30

    Luzung, M. R., Markham, J. P. & Toste, F. D. Catalytic isomerization of 1,5-enynes to bicyclo[3.1.0]hexenes. J. Am. Chem. Soc. 126, 10858–10859 (2004).

  31. 31

    Gorin, D. J. Davis, N. R. & Toste, F. D. Gold(I)-catalyzed intramolecular acetylenic Schmidt reaction. J. Am. Chem. Soc. 127, 1126–1127 (2005).

  32. 32

    Nieto-Oberhuber, C., Muñoz, M. P., Buñuel, E., Nevado, C., Cárdenas, D. J. & Echavarren, A. M. Cationic gold(I) complexes: highly alkynophilic catalysts for the exo- and endo-cyclization of enynes. Angew. Chem. Int. Ed. 43, 2402–2406 (2004).

  33. 33

    Shapiro, N. D. & Toste, F. D. Rearrangement of alkynyl sulfoxides catalyzed by gold(I) complexes. J. Am. Chem. Soc. 129, 4160–4161 (2007).

  34. 34

    Zhang, G. & Zhang, L. Au-containing all-carbon 1,3-dipoles: generation and [3 + 2] cycloaddition reactions. J. Am. Chem. Soc. 130, 12598–12599 (2008).

  35. 35

    Snyder, J. P. et al. A stable dirhodium tetracarboxylate carbenoid: crystal structure, bonding analysis, and catalysis. J. Am. Chem. Soc. 123, 11318–11319 (2001).

  36. 36

    Costantino, G., Rovito, R., Macchiarulo, A. & Pellicciari, R. Structure of metal–carbenoid intermediates derived from the dirhodium(II)tetracarboxylate mediated decomposition of α-diazocarbonyl compounds: a DFT study. J. Mol. Struct. Theochem, 581, 111 (2002).

  37. 37

    Amijs, C. H. M., López-Carrillo, V. & Echavarren, A. M. Gold-catalyzed addition of carbon nucleophiles to propargyl carboxylates. Org. Lett. 9, 4021–4024 (2007).

  38. 38

    Davies, P. W. Albrecht, S. J.-C. Alkynes as masked ylides: gold-catalysed intermolecular reactions of propargylic carboxylates with sulfides. Chem. Commun. 238–240 (2008).

  39. 39

    Nieto-Oberhuber, C. et al. Gold(I)-catalyzed cyclizations of 1,6-enynes: alkoxycyclizations and exo/endo skeletal rearrangements. Chem. Eur. J. 12, 1677–1693 (2006).

  40. 40

    Jaguar 7.6 (Schrodinger, New York, 2006).

  41. 41

    Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations—potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310 (1985).

  42. 42

    Martin, J. M. L. & Sundermann, A. Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials: The atoms Ga-Kr and In-Xe. J. Chem. Phys. 114, 3408–3420 (2001).

  43. 43

    Krishnan, R., Binkley, J. S., Seeger, R. & Pople, J. A. Self-consistent molecular-orbital methods. XX. A basis set for correlated wave-functions. J. Chem. Phys. 72, 650–654 (1980).

  44. 44

    Frisch, M. J., Pople, J. A. & Binkley, J. S. Self-consistent molecular-orbital methods 25. Supplementary functions for Gaussian-basis sets. J. Chem. Phys. 80, 3265–3269 (1984).

  45. 45

    Tannor, D. J. et al. Accurate first principles calculation of molecular charge-distributions and solvation energies from ab-initio quantum-mechanics and continuum dielectric theory. J. Am. Chem. Soc. 116, 11875–11882 (1994).

Download references


F.D.T. acknowledges NIHGMS, Bristol-Myers Squibb and Novartis for funding, and J. Matthey for the donation of AuCl3. The MSC computational facilities were funded by grants from ARO-DURIP and ONR-DURIP. D.B. and E.T. thank R. Nielsen for useful suggestions.

Author information

D.B., N.D.S. and F.D.T. originated the idea and wrote the manuscript, N.D.S. and Y.W. performed the experiments, D.B. and E.T. performed the calculations, all authors contributed to discussions and edited the manuscript. D.B. and N.D.S. contributed equally to this work.

Correspondence to F. Dean Toste.

Supplementary information

Supplementary information

Supplementary information (PDF 518 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Benitez, D., Shapiro, N., Tkatchouk, E. et al. A bonding model for gold(I) carbene complexes. Nature Chem 1, 482–486 (2009). https://doi.org/10.1038/nchem.331

Download citation

Further reading