Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The stabilization of fused-pentagon fullerene molecules

Abstract

The isolated pentagon rule (IPR) is now widely accepted as a general rule for determining the stability of all-carbon fullerene cages composed of hexagons and pentagons. Fullerenes that violate this rule have been deemed too reactive to be synthesized. The stabilization of non-IPR endohedral fullerenes depends on charge transfer from the encapsulated metal clusters (endoclusters) to fullerene cages, the electronic properties of empty all-carbon cages, the matching size and geometries of fullerene and endocluster, as well as the strong coordination of the metal ions to fused pentagons. The stability of non-IPR exohedral fullerenes can be rationalized primarily by both the 'strain-relief' and 'local-aromaticity' principles. This Review focuses on recent work on stabilization of non-IPR fullerenes, including theoretical and empirical principles, experimental methods, and molecular structures of fused-pentagon fullerenes characterized so far. The special chemical properties of non-IPR fullerenes that distinguish them from IPR-satisfying ones are also emphasized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic fused-pentagon configurations (with 2–3 pentagon subunits) in non-IPR fullerenes.
Figure 2: Prototypical molecular orbitals (MOs) for endofullerene Sc3N@#6,140C68.
Figure 3: Structures of metallofullerenes.
Figure 4: Structures of trimetallic nitride endofullerenes.
Figure 5: Structure of Sc2C2@#6,073C68 with metal carbide inside.
Figure 6: Structures of exohedral derivatives.
Figure 7: Schlegel diagrams of C58 and C62 derivatives.

Similar content being viewed by others

References

  1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162–163 (1985).

    Article  CAS  Google Scholar 

  2. Jones, D. E. H. Atomization of chemistry. New Scientist 31, 493–496 (1966).

    CAS  Google Scholar 

  3. Osawa, E. Superaromaticity. Kagaku (Kyoto, Japan) 25, 854–863 (1970).

    CAS  Google Scholar 

  4. Fowler, P. W. & Manolopoulos, D. E. An Atlas of Fullerenes (Oxford Univ. Press, 1995).

    Google Scholar 

  5. Kroto, H. W. The stability of the fullerenes Cn, with n=24, 28, 32, 36, 50, 60 and 70. Nature 329, 529–531 (1986).

    Google Scholar 

  6. Armit, J. W. & Robinson, R. Polynuclear heterocyclic aromatic types. I. Some indenoquinoline derivatives. J. Chem. Soc. Trans. 121, 827–839 (1922).

    CAS  Google Scholar 

  7. Bally, T., Chai, S., Neuenschwander, M. & Zhu, Z. Pentalene: formation, electronic, and vibrational structure. J. Am. Chem. Soc. 119, 1869–1875 (1997).

    CAS  Google Scholar 

  8. Schmalz, T. G., Seitz, W. A., Klein, D. J. & Hite, G. E. Sixty-carbon-atom carbon cages. Chem. Phys. Lett. 130, 203–207 (1986).

    CAS  Google Scholar 

  9. Schmalz, T. G., Seitz, W. A., Klein, D. J. & Hite, G. E. Elemental carbon cages. J. Am. Chem. Soc. 110, 1113–1127 (1988).

    CAS  Google Scholar 

  10. Haddon, R. C. Pyramidalization: geometrical interpretation of the π-orbital axis vector in three dimensions. J. Phys. Chem. 91, 3719–3720 (1987).

    CAS  Google Scholar 

  11. Haddon, R. C. Chemistry of the fullerenes: the manifestation of strain in a class of continuous aromatic molecules. Science 261, 1545–1550 (1993).

    CAS  PubMed  Google Scholar 

  12. Schein, S. & Friedrich, T. A geometric constraint, the head-to-tail exclusion rule, may be the basis for the isolated-pentagon rule in fullerenes with more than 60 vertices. Proc. Natl Acad. Sci. USA 105, 19142–19147 (2008).

    CAS  PubMed  Google Scholar 

  13. Lu, X. & Chen, Z. F. Curved π-conjugation, aromaticity, and the related chemistry of small fullerenes (< C60) and single-walled carbon nanotubes. Chem. Rev. 105, 3643–3696 (2005).

    CAS  PubMed  Google Scholar 

  14. Heath, J. R. et al. Lanthanum complexes of spheroidal carbon shells. J. Am. Chem. Soc. 107, 7779–7780 (1985).

    CAS  Google Scholar 

  15. Shinohara, H. Endohedral metallofullerenes. Rep. Prog. Phys. 63, 843–892 (2000).

    CAS  Google Scholar 

  16. Akasaka, T. & Nagase, S. Endofullerenes: A New Family of Carbon Clusters (Kluwer Academic, 2002).

    Google Scholar 

  17. Dunsch, L. & Yang, S. F. Endohedral clusterfullerenes - playing with cluster and cage sizes. Phys. Chem. Chem. Phys. 9, 3067–3081 (2007).

    CAS  PubMed  Google Scholar 

  18. Kadish, K. M. & Ruoff, R. S. Fullerenes: Chemistry, Physics, and Technology (Wiley-Interscience, 2000).

    Google Scholar 

  19. Wang, C. R. et al. Materials sicence: C66 fullerene encaging a scandium dimer. Nature 408, 426–427 (2000).

    CAS  PubMed  Google Scholar 

  20. Stevenson, S. et al. Materials sicence: A stable non-classical metallofullerene family. Nature 408, 427–428 (2000).

    CAS  PubMed  Google Scholar 

  21. Campanera, J. M., Bo, C. & Poblet, J. M. General rule for the stabilization of fullerene cages encapsulating trimetallic nitride templates. Angew. Chem. Int. Ed. 44, 7230–7233 (2005).

    CAS  Google Scholar 

  22. Yang, S. F., Kalbac, M., Popov, A. & Dunsch, L. A facile route to the non-IPR fullerene Sc3N@C68: synthesis, spectroscopic characterization, and density functional theory computations (IPR = isolated pentagon rule). Chem. Eur. J. 12, 7856–7863 (2006).

    CAS  PubMed  Google Scholar 

  23. Popov, A. A. & Dunsch, L. Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n=68–98): a density functional theory study. J. Am. Chem. Soc. 129, 11835–11849 (2007).

    CAS  PubMed  Google Scholar 

  24. Nagase, S., Kobayashi, K. & Akasaka, T. Unconventional cage structures of endohedral metallofullerenes. Theochem-J. Mol. Struct. 461–462, 97–104 (1999).

    Google Scholar 

  25. Shi, Z. Q., Wu, X., Wang, C. R., Lu, X. & Shinohara, H. Isolation and characterization of Sc2C2@C68: a metal-carbide endofullerene with a non-IPR carbon cage. Angew. Chem. Int. Ed. 45, 2107–2111 (2006).

    CAS  Google Scholar 

  26. Iiduka, Y. et al. Structural determination of metallofullerene Sc3C82 revisited: a surprising finding. J. Am. Chem. Soc. 127, 12500–12501 (2005).

    CAS  PubMed  Google Scholar 

  27. Stevenson, S. et al. Pyramidalization of Gd3N inside a C80 cage. The synthesis and structure of Gd3N@C80 . Chem. Commun. 2814–2815 (2004).

  28. Olmstead, M. M. et al. Isolation and structural characterization of the endohedral fullerene Sc3N@C78 . Angew. Chem. Int. Ed. 4 0, 1223–1225 (2001).

    Google Scholar 

  29. Popov, A. A., Krause, M., Yang, S., Wong, J. & Dunsch, L. C78 cage isomerism defined by trimetallic nitride cluster size: a computational and vibrational spectroscopic study. J. Phys. Chem. B 111, 3363–3369 (2007).

    CAS  PubMed  Google Scholar 

  30. Akasaka, T. et al. 13C and 139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral dimetallofullerenes. Angew. Chem. Int. Ed. Engl. 36, 1643–1645 (1997).

    CAS  Google Scholar 

  31. Stevenson, S. et al. Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401, 55–57 (1999).

    CAS  Google Scholar 

  32. Yang, S. F., Popov, A. A. & Dunsch, L. Violating the isolated pentagon rule (IPR): the endohedral non-IPR cage of Sc3N@C70 . Angew. Chem. Int. Ed. 46, 1256–1259 (2007).

    CAS  Google Scholar 

  33. Yang, S. F., Popov, A. A. & Dunsch, L. The role of an asymmetric nitride cluster on a fullerene cage: The Non-IPR endohedral DySc2N@C76 . J. Phys. Chem. B 111, 13659–13663 (2007).

    CAS  PubMed  Google Scholar 

  34. Summerscales, O. T. & Cloke, F. G. N. The organometallic chemistry of pentalene. Coord. Chem. Rev. 250, 1122–1140 (2006).

    CAS  Google Scholar 

  35. Chai, Y. et al. Fullerenes with metals inside. J. Phys. Chem. 95, 7564–7568 (1991).

    CAS  Google Scholar 

  36. Kratschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Solid C60: A new form of carbon. Nature 347, 354–358 (1990).

    Google Scholar 

  37. Yang, S. F. & Dunsch, L. A large family of dysprosium-based trimetallic nitride endohedral fullerenes: Dy3N@C2n (39≤n≤44). J. Phys. Chem. B 109, 12320–12328 (2005).

    CAS  PubMed  Google Scholar 

  38. Bandow, S., Shinohara, H., Saito, Y., Ohkohchi, M. & Ando, Y. High yield synthesis of lanthanofullerenes via lanthanum carbide. J. Phys. Chem. 97, 6101–6103 (1993).

    CAS  Google Scholar 

  39. Shinohara, H. et al. Isolation and spectroscopic properties of scandium fullerenes (Sc2@C74, Sc2@C82, and Sc2@C84). J. Phys. Chem. 97, 4259–4261 (1993).

    CAS  Google Scholar 

  40. Bolskar, R. D. & Alford, J. M. Chemical oxidation of endohedral metallofullerenes: identification and separation of distinct classes. Chem. Commun. 1292–1293 (2003).

  41. Tsuchiya, T. et al. Reduction of endohedral metallofullerenes: a convenient method for isolation. Chem. Mater. 16, 4343–4346 (2004).

    CAS  Google Scholar 

  42. Elliott, B., Yu, L. & Echegoyen, L. A simple isomeric separation of D5h and Ih Sc3N@C80 by selective chemical oxidation. J. Am. Chem. Soc. 127, 10885–10888 (2005).

    CAS  PubMed  Google Scholar 

  43. Ge, Z. X., Duchamp, J. C., Cai, T., Gibson, H. W. & Dorn, H. C. Purification of endohedral trimetallic nitride fullerenes in a single, facile step. J. Am. Chem. Soc. 127, 16292–16298 (2005).

    CAS  PubMed  Google Scholar 

  44. Stevenson, S. et al. Nonchromatographic “stir and filter approach” (SAFA) for isolating Sc3N@C80 metallofullerenes. J. Am. Chem. Soc. 128, 8829–8835 (2006).

    CAS  PubMed  Google Scholar 

  45. Angeli, C. D. et al. Purification of trimetallic nitride templated endohedral metallofullerenes by a chemical reaction of congeners with eutectic 9-methylanthracene. Chem. Mater. 20, 4993–4997 (2008).

    CAS  Google Scholar 

  46. Rietveld, H. A profile refinement method for nuclear and magnetic structures. J. App. Cryst. 2, 65–71 (1969).

    CAS  Google Scholar 

  47. Collins, D. M. Electron density images from imperfect data by iterative entropy maximization. Nature 298, 49–51 (1982).

    CAS  Google Scholar 

  48. Takata, M. et al. Triangle scandium cluster imprisoned in a fullerene cage. Phys. Rev. Lett. 83, 2214–2217 (1999).

    CAS  Google Scholar 

  49. Tan, K. & Lu, X. Electronic structure and redox properties of the open-shell metal-carbide Endofullerene Sc3C2@C80: a density functional theory investigation. J. Phys. Chem. A 110, 1171–1176 (2006).

    CAS  PubMed  Google Scholar 

  50. Nishibori, E. et al. High-resolution analysis of (Sc3C2)@C80 metallofullerene by third generation synchrotron radiation X-ray powder diffraction. J. Phys. Chem. B 110, 19215–19219 (2006).

    CAS  PubMed  Google Scholar 

  51. Kobayashi, K. & Nagase, S. A stable unconventional structure of Sc2@C66 found by density functional calculations. Chem. Phys. Lett. 362, 373–379 (2002).

    CAS  Google Scholar 

  52. Takata, M., Nishibori, E., Sakata, M., Wang, C. R. & Shinohara, H. Sc2 dimer in IPR-violated C66 fullerene: a covalent bonded metallofullerene. Chem. Phys. Lett. 372, 512–518 (2003).

    CAS  Google Scholar 

  53. Olmstead, M. M. et al. Sc3N@C68: folded pentalene coordination in an endohedral fullerene that does not obey the isolated pentagon rule. Angew. Chem. Int. Ed. 42, 900–903 (2003).

    CAS  Google Scholar 

  54. Haddon, R. C. π-electrons in three dimensiona. Acc. Chem. Res. 21, 243–249 (1988).

    CAS  Google Scholar 

  55. Kobayashi, K., Nagase, S., Yoshida, M. & Sawa, E. Endohedral metallofullerenes. Are the isolated pentagon rule and fullerene structures always satisfied? J. Am. Chem. Soc. 119, 12693–12694 (1997).

    CAS  Google Scholar 

  56. Wan, T. S. M. et al. Production, isolation, and electronic properties of missing fullerenes: Ca@C72 and Ca@C74 . J. Am. Chem. Soc. 120, 6806–6807 (1998).

    CAS  Google Scholar 

  57. Ichikawa, T. et al. Isolation and characterization of a new isomer of Ca@C72 . Chem. Lett. 33, 1008–1009 (2004).

    CAS  Google Scholar 

  58. Wakahara, T. et al. La@C72 having a non-IPR carbon cage. J. Am. Chem. Soc. 128, 14228–14229 (2006).

    CAS  PubMed  Google Scholar 

  59. Kato, H., Taninaka, A., Sugai, T. & Shinohara, H. Structure of a missing-caged metallofullerene: La2@C72 . J. Am. Chem. Soc. 125, 7782–7783 (2003).

    CAS  PubMed  Google Scholar 

  60. Slanina, Z. et al. La2@C72 and Sc2@C72: Computational characterizations. J. Phys. Chem. A 110, 2231–2234 (2006).

    CAS  PubMed  Google Scholar 

  61. Lu, X. et al. Chemical understanding of a non-IPR metallofullerene: stabilization of encaged metals on fused-pentagon bonds in La2@C72 . J. Am. Chem. Soc. 130, 9129–9136 (2008).

    CAS  PubMed  Google Scholar 

  62. Lu, X. et al. Bis-carbene adducts of non-IPR La2@C72: iocalization of high reactivity around fused pentagons and electrochemical properties. Angew. Chem. Int. Ed. 47, 8642–8645 (2008).

    CAS  Google Scholar 

  63. Yamada, M. et al. Spectroscopic and theoretical study of endohedral dimetallofullerene having a non-IPR fullerene cage: Ce2@C72 . J. Phys. Chem. A 112, 7627–7631 (2008).

    CAS  PubMed  Google Scholar 

  64. Krause, M., Wong, J. & Dunsch, L. Expanding the world of endohedral fullerenes-the Tm3N@C2n (39≤n≤43) clusterfullerene family. Chem. Eur. J. 11, 706–711 (2005).

    CAS  PubMed  Google Scholar 

  65. Mercado, B. Q. et al. Is the isolated pentagon rule merely a suggestion for endohedral fullerenes? The structure of a second egg-shaped endohedral fullerene-Gd3N@Cs(39663)-C82 . J. Am. Chem. Soc. 130, 7854–7855 (2008).

    CAS  PubMed  Google Scholar 

  66. Beavers, C. M. et al. Tb3N@C84: an improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. J. Am. Chem. Soc. 128, 11352–11353 (2006).

    CAS  PubMed  Google Scholar 

  67. Zuo, T. et al. New egg-shaped fullerenes: non-isolated pentagon structures of Tm3N@Cs(51365)C84 and Gd3N@Cs(51365)C84 . Chem. Commun. 1067–1069 (2008).

  68. Hirsch, A. & Brettreich, M. Fullerenes: Chemistry and Reactions (Wiley-VCH, 2005).

    Google Scholar 

  69. Petrie, S. & Bohme, D. K. Enhanced reactivity of fullerene cations containing adjacent pentagons. Nature 365, 426–429 (1993).

    CAS  Google Scholar 

  70. Kroto, H. W. & Walton, D. R. M. Stable derivatives of small fullerenes. Chem. Phys. Lett. 214, 353–356 (1993).

    CAS  Google Scholar 

  71. Xie, S. Y. et al. Capturing the labile fullerene[50] as C50Cl10 . Science 304, 699–699 (2004).

    CAS  PubMed  Google Scholar 

  72. Han, X. et al. Crystal structures of saturn-like C50Cl10 and pineapple-shaped C64Cl4: geometric implications of double- and triple-pentagon-fused chlorofullerenes. Angew. Chem. Int. Ed. 47, 5340–5343 (2008).

    CAS  Google Scholar 

  73. Aihara, J. I. Bond resonance energy and verification of the isolated pentagon rule. J. Am. Chem. Soc. 117, 4130–4136 (1995).

    CAS  Google Scholar 

  74. Aihara, J. I., Oe, S., Yoshida, M. & Osawa, E. Further test of the isolated pentagon rule: thermodynamic and kinetic stabilities of C84 fullerene isomers. J. Comput. Chem. 17, 1387–1394 (1996).

    CAS  Google Scholar 

  75. Tan, Y. Z. et al. Two Ih-symmetry-breaking C60 isomers stabilized by chlorination. Nature Mater. 7, 790–794 (2008).

    CAS  Google Scholar 

  76. Taylor, R. Surprises, serendipity, and symmetry in fullerene chemistry. Synlett 776–793 (2000).

  77. Taylor, R. Why fluorinate fullerenes? J. Fluorine Chem. 125, 359–368 (2004).

    CAS  Google Scholar 

  78. Simeonov, K. S., Amsharov, K. Y. & Jansen, M. Connectivity of the chiral D2-symmetric isomer of C76 through a crystal-structure determination of C76Cl18TiCl4 . Angew. Chem. Int. Ed. 46, 8419–8421 (2007).

    CAS  Google Scholar 

  79. Simeonov, K. S., Amsharov, K. Y. & Jansen, M. C80Cl12: a chlorine derivative of the chiral D2-C80 isomer-empirical rationale of halogen-atom addition pattern. Chem. Eur. J. 15, 1812–1815 (2009).

    CAS  PubMed  Google Scholar 

  80. Poater, J., Fradera, X., Duran, M. & Sola, M. An insight into the local aromaticities of polycyclic aromatic hydrocarbons and fullerenes. Chem. Eur. J. 9, 1113–1122 (2003).

    CAS  PubMed  Google Scholar 

  81. Hirsch, A., Chen, Z. & Jiao, H. Spherical aromaticity in I h symmetrical fullerenes: the 2(N+1)2 rule. Angew. Chem. Int. Ed. 39, 3915–3917 (2000).

    CAS  Google Scholar 

  82. Paquette, L. A. Dodecahedrane-the chemical transliteration of Plato's universe (A Review). Proc. Natl Acad. Sci. USA 79, 4495–4500 (1982).

    CAS  Google Scholar 

  83. Troshin, P. A. et al. Isolation of two seven-membered ring C58 fullerene derivatives: C58F17CF3 and C58F18 . Science 309, 278–281 (2005).

    CAS  Google Scholar 

  84. Qian, W. Y. et al. C62, a non-classical fullerene incorporating a four-membered ring. J. Am. Chem. Soc. 122, 8333–8334 (2000).

    CAS  Google Scholar 

  85. Qian, W. et al. Synthesis of stable derivatives of C62: the first nonclassical fullerene incorporating a four-membered ring. J. Am. Chem. Soc. 125, 2066–2067 (2003).

    CAS  PubMed  Google Scholar 

  86. Prinzbach, H. et al. Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20 . Nature 407, 60–63 (2000).

    CAS  PubMed  Google Scholar 

  87. Ternansky, R. J., Balogh, D. W. & Paquette, L. A. Dodecahedrane. J. Am. Chem. Soc. 104, 4503–4504 (1982).

    CAS  Google Scholar 

  88. Paquette, L. A., Ternansky, R. J. & Balogh, D. W. A strategy for the synthesis of monosubstituted dodecahedrane and the isolation of an isododecahedrane. J. Am. Chem. Soc. 104, 4502–4503 (1982).

    CAS  Google Scholar 

  89. Piskoti, C., Yarger, J. & Zettl, A. C36, a new carbon solid. Nature 393, 771–774 (1998).

    CAS  Google Scholar 

  90. Koshio, A., Inakuma, M., Sugai, T. & Shinohara, H. A preparative scale synthesis of C36 by high-temperature laser-vaporization: purification and identification of C36H6 and C36H6O. J. Am. Chem. Soc. 122, 398–399 (2000).

    CAS  Google Scholar 

  91. Koshio, A., Inakuma, M., Wang, Z. W., Sugai, T. & Shinohara, H. In situ laser-furnace TOF mass spectrometry of C36 and the large-scale production by arc-discharge. J. Phys. Chem. B 104, 7908–7913 (2000).

    CAS  Google Scholar 

  92. Loffler, D., Jester, S. S., Weis, P., Bottcher, A. & Kappes, M. M. Cn films (n = 50, 52, 54, 56, and 58) on graphite: cage size dependent electronic properties. J. Chem. Phys. 124, 054705 (2006).

    PubMed  Google Scholar 

  93. Wahl, F., Woerth, J. & Prinzbach, H. The pagodane route to dodecahedranes: improved access to the C20H20 framework as well as partial and total functionalization. Does C20 fullerene exist? Angew. Chem. Int. Ed. Engl. 32, 1722–1726 (1993).

    Google Scholar 

  94. Prinzbach, H. & Weber, K. From insecticide to Plato's Universe - the pagodane route to dodecahedranes: new routes and new targets. Angew. Chem. Int. Ed. Engl. 33, 2239–2257 (1994).

    Google Scholar 

  95. Wahl, F. et al. Towards perfunctionalized dodecahedranes - en route to C20 fullerene. Chem. Eur. J. 12, 6255–6267 (2006).

    CAS  PubMed  Google Scholar 

  96. Chen, Z. Fullerene derivative: the smaller fullerene C50, isolated as C50Cl10 . Angew. Chem. Int. Ed. 43, 4690–4691 (2004).

    CAS  Google Scholar 

  97. Tan, Y. Z. et al. An entrant of smaller fullerene: C56 captured by chlorines and aigned in linear chains. J. Am. Chem. Soc. 130, 15240–15241 (2008).

    CAS  PubMed  Google Scholar 

  98. Chen, D. L., Tian, W. Q., Feng, J. K. & Sun, C. C. Structures and electronic properties of C56Cl8 and C56Cl10 fullerene compounds. ChemPhysChem 8, 2386–2390 (2007).

    CAS  PubMed  Google Scholar 

  99. Stone, A. J. & Wales, D. J. Theoretical studies of icosahedral footballene sixty-carbon-atom molecules and some related species. Chem. Phys. Lett. 128, 501–503 (1986).

    CAS  Google Scholar 

  100. Wang, C. R. et al. C64H4: Production, isolation, and structural characterizations of a stable unconventional fulleride. J. Am. Chem. Soc. 128, 6605–6610 (2006).

    CAS  PubMed  Google Scholar 

  101. Yan, Q. B., Zheng, Q. R. & Su, G. Structures, electronic properties, spectroscopies, and hexagonal monolayer phase of a family of unconventional fullerenes C64X4 (X = H, F, Cl, Br). J. Phys. Chem. C 111, 549–554 (2007).

    CAS  Google Scholar 

  102. Campanera, J. M., Bo, C. & Poblet, J. M. Exohedral reactivity of trimetallic nitride template (TNT) endohedral metallofullerenes. J. Org. Chem. 71, 46–54 (2006).

    CAS  PubMed  Google Scholar 

  103. Cai, T. et al. Synthesis and characterization of a non-IPR fullerene derivative: Sc3N@C68[C(COOC2H5)(2)]. J. Phys. Chem. C 112, 19203–19208 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Michael Blackburn from the University of Sheffield, UK, and Xin Lu from Xiamen University, China, for help in preparing the manuscript. This work was supported by the NNSFC (No. 20525103, 20531050, 20721001) and the 973 Program (No. 2007CB815301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Yuan Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, YZ., Xie, SY., Huang, RB. et al. The stabilization of fused-pentagon fullerene molecules. Nature Chem 1, 450–460 (2009). https://doi.org/10.1038/nchem.329

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.329

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing