Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decorated carbon nanotubes with unique oxygen sensitivity

Abstract

The relatively simple and robust architecture of microelectronic devices based on carbon nanotubes, in conjunction with their environmental sensitivity, places them among the leading candidates for incorporation into ultraportable or wearable chemical analysis platforms. We used single-walled carbon nanotube (SWNT) networks to establish a mechanistic understanding of the solid-state oxygen sensitivity of a Eu3+-containing dendrimer complex. After illumination with 365 nm light, the SWNT networks decorated with the Eu3+ dendrimer show bimodal (optical spectroscopic and electrical conductance) sensitivity towards oxygen gas at room temperature under ambient pressure. We investigated the mechanism of this unique oxygen sensitivity with time-resolved and steady-state optical spectroscopy, analysis of excited-state luminescence lifetimes and solid-state electrical transport measurements. We demonstrate a potential application of this system by showing a reversible and linear electrical response to oxygen gas in the tested range (5–27%).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structure of the Eu3+-containing dendrimer complex (Eu8) and presentation of decorated SWNT devices.
Figure 2: Solution-phase oxygen sensitivity of the Eu8 complex.
Figure 3: Bimodal oxygen sensitivity of the Eu8-decorated SWNT devices.
Figure 4: Electrical response of a Eu8-SWNT device with varying oxygen concentrations.

Similar content being viewed by others

References

  1. Rosenzweig, Z. & Kopelman, R. Development of a submicrometer optical fiber oxygen sensor. Anal. Chem. 67, 2650–2654 (1995).

    Article  CAS  Google Scholar 

  2. Wolfbeis, O. S. Fiber-optic chemical sensors and biosensors. Anal. Chem. 80, 4269–4283 (2008).

    Article  CAS  Google Scholar 

  3. Janata, J., Jasowicz, M., Vanysek, P. & DeVaney, D. M. Chemical sensors. Anal. Chem. 70, 179R–208R (1998).

    Article  CAS  Google Scholar 

  4. Madou, M. J. & Morrison, S. R. Chemical Sensing with Solid State Devices (Academic Press, 1989).

    Google Scholar 

  5. Ramamoorthy, R., Dutta, P. D. & Akbar, S. A. Oxygen sensors: materials, methods, designs and applications. J. Mater. Sci. 38, 4271–4282 (2003).

    Article  CAS  Google Scholar 

  6. Nerni, G. et al. A highly sensitive oxygen sensor operating at room temperature based on platinum-doped In2O3 nanocrystals. Chem. Commun. 6032–6034 (2005).

  7. Dingsheng, W. et al. Ultralong single-crystalline Ag2S nanowires: promising candidates for photoswitches and room-temperature oxygen sensors. Adv. Mater. 20, 2628–2632 (2008).

    Article  Google Scholar 

  8. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    Article  CAS  Google Scholar 

  9. Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nature Nanotech. 2, 605–615 (2007).

    Article  CAS  Google Scholar 

  10. Snow, E. S., Perkins, F. K., Houser, E. J., Badescu, S. C. & Reinecke, T. L. Chemical detection with a single-walled carbon nanotube capacitor. Science 307, 1942–1945 (2005).

    Article  CAS  Google Scholar 

  11. Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000).

    Article  CAS  Google Scholar 

  12. Kauffman, D. R. & Star, A. Carbon nanotube gas and vapor sensors. Angew. Chem. Int. Ed. 47, 6550–6570 (2008).

    Article  CAS  Google Scholar 

  13. Collins, P. G., Bradley, K., Ishigami, M. & Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000).

    Article  CAS  Google Scholar 

  14. Valentini, L, Armentano, I., Kenny, J. M., Bidali, S. & Mariani, A. Interaction of oxygen with nanocomposites made of n-type conducting polymers and carbon nanotubes: role of charge complex formation between nanotubes and poly(3-octylthiophene). Thin Solid Films 476, 162–167 (2005).

    Article  CAS  Google Scholar 

  15. McDonagh, C., Burke, C. S. & MacCraith, B. D. Optical chemical sensors. Chem. Rev. 108, 400–422 (2008).

    Article  CAS  Google Scholar 

  16. de Sousa, M. et al. An inhibit (INH) molecular logic gate based on 1,8-naphthalimide-sensitised europium luminescence. Photochem. Photobiol. Sci. 3, 639–642 (2004).

    Article  CAS  Google Scholar 

  17. Wu, Z. et al. Transparent, conductive carbon nanotube films. Science 305, 1273–1276 (2004).

    Article  CAS  Google Scholar 

  18. Bekyarova, E. et al. Mechanism of ammonia detection by chemically functionalized single-walled carbon nanotubes: in situ electrical and optical study of gas analyte detection. J. Am. Chem. Soc. 129, 10700–10706 (2007).

    Article  CAS  Google Scholar 

  19. Kauffman, D. R. & Star, A. Simultaneous spectroscopic and solid-state electronic measurement of single-walled carbon nanotube devices. J. Phys. Chem. C 112, 4430–4434 (2008).

    Article  CAS  Google Scholar 

  20. O'Connell, M. J., Eibergen, E. E. & Doorn, S. K. Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nature Mater. 4, 412–418 (2008).

    Article  Google Scholar 

  21. Heller, D. A. et al. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311, 508–511 (2006).

    Article  CAS  Google Scholar 

  22. Hu, L., Hecht, D. S. & Grüner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4, 2513–2517 (2004).

    Article  CAS  Google Scholar 

  23. Bekyarova, E. et al. Electronic properties of single-walled carbon nanotube networks. J. Am. Chem. Soc. 127, 5990–5995 (2005).

    Article  CAS  Google Scholar 

  24. Cross, J. P., Lauz, M, Badger, P. D. & Petoud, S. Polymetallic lanthanide complexes with PAMAM–naphthalimide dendritic ligands: luminescent lanthanide complexes formed in solution. J. Am. Chem. Soc. 126, 16278–16279 (2004).

    Article  CAS  Google Scholar 

  25. Savvate'ev, V. et al. Integrated organic light-emitting device/fluorescence-based chemical sensors. Appl. Phys. Lett. 81, 4652–4654 (2002).

    Article  CAS  Google Scholar 

  26. Heller, I. et al. Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 8, 591–595 (2008).

    Article  CAS  Google Scholar 

  27. Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–6206 (1992).

    Article  CAS  Google Scholar 

  28. Katura, H. et al. Optical properties of single-wall carbon nanotubes. Synth. Metals 103, 2555–2558 (1999).

    Article  Google Scholar 

  29. Chen, R. J. et al. Molecular photodesorption from single-walled carbon nanotubes. Appl. Phys. Lett. 79, 2258–2260 (2001).

    Article  CAS  Google Scholar 

  30. Shim, M., Back, J. H., Ozel, T. & Kwon, K.-W. Effects of oxygen on the electron transport properties of carbon nanotubes: ultraviolet desorption and thermally induced processes. Phys. Rev. B 71, 205411 (2005).

    Article  Google Scholar 

  31. Derycke, V., Martel, R., Appenzeller, J. & Avouris, P. Controlling doping and carrier injection in carbon nanotube transistors. Appl. Phys. Lett. 80, 2773–2775 (2002).

    Article  CAS  Google Scholar 

  32. Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nature Nanotech. 3, 387–394 (2008).

    Article  CAS  Google Scholar 

  33. Lee, C. Y., Baik, S., Zhang, J., Masel, R. I. & Strano, M. S. Charge transfer from metallic single-walled carbon nanotube sensor arrays. J. Phys. Chem. B 110, 11055–11061 (2006).

    Article  CAS  Google Scholar 

  34. Hecht, D. S. et al. Bioinspired detection of light using a porphyrin-sensitized single-wall carbon nanotube field effect transistor. Nano Lett. 6, 2031–2036 (2006).

    Article  CAS  Google Scholar 

  35. Star, A., Lu, Y., Bradley, K. & Grüner, G. Nanotube optoelectronic memory devices. Nano Lett. 4, 1587–1591 (2004).

    Article  CAS  Google Scholar 

  36. Borghetti, J. et al. Optoelectronic switch and memory devices based on polymer-functionalized carbon nanotube transistors. Adv. Mater. 18, 2535–2540 (2006).

    Article  CAS  Google Scholar 

  37. Chua, L.-L. et al. General observation of n-type field-effect behavior in organic semiconductors. Nature 434, 194–199 (2005).

    Article  CAS  Google Scholar 

  38. Hartstein, A. & Young, D. Identification of electron traps in thermal silicon dioxide films. Appl. Phys. Lett. 38, 631–633 (1981).

    Article  CAS  Google Scholar 

  39. Kim, W. et al. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 3, 193–198 (2003).

    Article  CAS  Google Scholar 

  40. Pantelides, S. T. The electronic structure of impurities and defects in SiO2 . Thin Solid Films 89, 103–108 (1982).

    Article  CAS  Google Scholar 

  41. Giordano, L., Sushko, P. V., Pacchioni, G. & Shluger, A. L. Electron trapping at point defects on hydroxylated silica surfaces. Phys. Rev. Lett. 99, 136801 (2007).

    Article  Google Scholar 

  42. Anghel, C. et al. Nanotube transistors as direct probes of the trap dynamics at dielectric–organic interfaces of interest in organic electronics and solar cells. Nano Lett. 8, 3619–3625 (2008).

    Article  CAS  Google Scholar 

  43. Queisser, H. J. Nonexponential relaxation of conductance near semiconductor interfaces. Phys. Rev. Lett. 54, 234–236 (1985).

    Article  CAS  Google Scholar 

  44. Bünzli, J.-C. G. & Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077 (2005).

    Article  Google Scholar 

  45. Hangleiter, A. Recombination of correlated electron-hole pairs in two-dimensional semiconductors. Phys. Rev. B 48, 9146–9149 (1993).

    Article  CAS  Google Scholar 

  46. Kajihara, K. et al. Interstitial oxygen molecules in amorphous SiO2. II. The influence of common dopands (SiOH, SiF, and SiCl groups) and fictive temperature on the decay of single photoluminescence. J. Appl. Phys. 98, 013528 (2005).

    Article  Google Scholar 

  47. Aroutiounian, V. Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells. Int. J. Hydrogen Energy 32, 1145–1158 (2007).

    Article  CAS  Google Scholar 

  48. Sorescu, D. C., Jordan, K. D. & Avouris, P. Theoretical study of oxygen adsorption on graphite and the (8,0) single-walled carbon nanotube. J. Phys. Chem. B 105, 11227–11232 (2001).

    Article  CAS  Google Scholar 

  49. LabVIEW 7.1 (National Instruments Corporation, Austin, Texas, 2004).

  50. OriginPro 7.0 (OriginLab Corporation, Northampton, Massachusetts, 2002).

  51. Lide, D. R. CRC Handbook of Chemistry and Physics, 85th edn (CRC, 2005).

    Google Scholar 

Download references

Acknowledgements

The authors thank D. H. Waldeck for his comments, and acknowledge the facilities, scientific and technical assistance of the Materials Micro-Characterization Laboratory of the Department of Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh. This work was performed in support of ongoing research in sensor systems and diagnostics at the National Energy Technology Laboratory under RDS contract DE-AC26-04NT41817. This work was partially supported through the National Science Foundation (Grant DBI-0352346).

Author information

Authors and Affiliations

Authors

Contributions

D.R.K fabricated devices, performed electron microscopy, optical absorption and EDX spectroscopy, electrical conductance measurements and gas sensor studies. C.M.S. performed photoluminescence spectroscopy and luminescence lifetime measurements. H.U. synthesized and characterized the Eu8 dendrimer. All authors contributed to the design of the experiments, interpretation of the results and writing of the manuscript.

Corresponding authors

Correspondence to Stéphane Petoud or Alexander Star.

Supplementary information

Supplementary information

Supplementary information (PDF 3528 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauffman, D., Shade, C., Uh, H. et al. Decorated carbon nanotubes with unique oxygen sensitivity. Nature Chem 1, 500–506 (2009). https://doi.org/10.1038/nchem.323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.323

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing