Chemical self-organization

A path to patterns

Scientists have long been intrigued by a mechanism first predicted by Alan Turing that leads to self-organizing chemical patterns. Now they have a guide to creating them experimentally.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental Turing patterns of activator and inhibitor.

References

  1. 1

    Turing, A. M. Phil. Trans. R. Soc. B 237, 37–72 (1952).

  2. 2

    Maini, P. K., Baker, R. E. & Chuong, C. M. Science 314, 1397–1398 (2006).

  3. 3

    Horvath, J., Szalai, I. & De Kepper, P. Science 324, 772–775 (2009).

  4. 4

    Vanag, V. K. & Epstein, I. R. Chaos 18, 1–11 (2008).

  5. 5

    Boissonade, J. & De Kepper, P. J. Phys. Chem. 84, 501–506 (1980).

  6. 6

    Epstein, I. R. & Pojman, J. A. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns and Chaos (Oxford Univ. Press, 1998).

  7. 7

    Noszticzius, Z. et al. Nature 329, 619–620 (1987).

  8. 8

    Castets, V., Dulos, E., Boissonade, J. & De Kepper, P. Phys. Rev. Lett. 64, 2953–2957 (1990).

  9. 9

    Lengyel, I. & Epstein, I. R. Proc. Natl Acad. Sci. USA 89, 3977–3979 (1992).

  10. 10

    Whitesides, G. M. & Grzybowski, B. Science 295, 2418–2421 (2002).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taylor, A., Tinsley, M. A path to patterns. Nature Chem 1, 340–341 (2009). https://doi.org/10.1038/nchem.310

Download citation

Further reading