Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces

Abstract

There is considerable interest in skewing the transmission of chirality, or ‘handedness’, from the molecular to the supramolecular level so that single-handed superstructures are created from mixed enantiomer systems. One approach is to flip the chirality of all the molecular building blocks to the same handedness. However, manipulation of molecular chirality is not possible for non-interconvertible enantiomers, and mechanisms that skew such systems are unclear. Here, we track the molecule-to-supramolecular chiral transfer in such systems at the nanoscale by probing molecular monolayers at surfaces. Scanning tunnelling microscopy and theoretical modelling show that enantiomeric imbalances lead to nonlinear symmetry breaking in organization, driven by configurational entropy effects. Thus, the majority enantiomer readily organizes into its superstructure with the minority left fragmented and disorganized, and thus impeded from realizing its superstructure. Such effects promise new strategies in chiral separations and enantioselective processes, and may have contributed to the homochiral evolution of complex matter from prebiotic environments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Chiral organizations observed in the enantiopure TA–Cu(110) systems.
Figure 2: 2D organization of racemic (±)-TA on Cu(110) revealed by STM.
Figure 3: Chiral LEED organizations observed in enantiomeric mixtures of tartaric acid on Cu(110).
Figure 4: 2D organization of an enantiomerically unbalanced adlayer of (R,R)-TA and (S,S)-TA on Cu(110) revealed by STM.
Figure 5: KMC simulations that show system organization.

References

  1. Weissbuch, I., Leiserowitz, L. & Lahav, M. Stochastic ‘mirror symmetry breaking’ via self-assembly, reactivity and amplification of chirality: relevance to abiotic conditions. Top. Curr. Chem. 259, 123–165 (2005).

    Article  CAS  Google Scholar 

  2. Jacques, J., Collet, A. & Wilen S. H. Enantiomers, Racemates and Resolutions (Krieger, 1994).

    Google Scholar 

  3. Green, M. M. et al. Macromolecule stereochemistry: the out-of-proportion influence of optically active comonomers on the conformational characteristics of polyisocyanates. The sergeants and soldiers experiment. J. Am. Chem. Soc. 111, 6452–6454 (1989).

    Article  Google Scholar 

  4. Sakai, K., Hirayama, N. & Tamura, R. Novel Optical Resolution Technologies (Springer, 2007).

    Book  Google Scholar 

  5. Barlow, S. M. & Raval, R. Complex organic molecules at metal surfaces: bonding, organisation and chirality. Surf. Sci. Rep. 50, 201–341 (2003).

    Article  CAS  Google Scholar 

  6. Humblot, V., Barlow, S. M. & Raval, R. Two-dimensional organisational chirality through supramolecular assembly of molecules at metal surfaces. Prog. Surf. Sci. 76, 1–19 (2004).

    Article  CAS  Google Scholar 

  7. Fasel, R., Parschau, M. & Ernst, K. H. Amplification of chirality in two-dimensional enantiomorphous lattices. Nature 439, 449–452 (2006).

    Article  CAS  Google Scholar 

  8. Parschau, M., Romer, S. & Ernst, K. H. Induction of homochirality in achiral enantiomorphous monolayers. J. Am. Chem. Soc. 126, 15398–15399 (2004).

    Article  CAS  Google Scholar 

  9. Parschau, M., Kampen, T. & Ernst, K. H. Homochirality in monolayers of achiral meso tartaric acid. Chem. Phys. Lett. 407, 433–437 (2005).

    Article  CAS  Google Scholar 

  10. Perez-Garcia, L. & Amabilino, D. B. Spontaneous resolution, whence and whither: from enantiomorphic solids to chiral liquid crystals, monolayers and macro- and supra-molecular polymers and assemblies. Chem. Soc. Rev. 36, 941–967 (2007).

    Article  CAS  Google Scholar 

  11. de Feyter, S. & de Schryver, F. C. Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem. Soc. Rev. 32, 139–150 (2003).

    Article  CAS  Google Scholar 

  12. Rankin, R. B. & Sholl, D. S. Structures of glycine, enantiopure alanine, and racemic alanine adlayers on Cu(110) and Cu(100) surfaces. J. Phys. Chem. B 109, 16764–16773 (2005).

    Article  CAS  Google Scholar 

  13. Weigelt, S. et al. Chiral switching by spontaneous conformational change in adsorbed organic molecules. Nature Mater. 5, 112–117 (2006).

    Article  CAS  Google Scholar 

  14. Blum, M. C., Cavar, E., Pivetta, M., Patthey, F. & Schneider, W. D. Conservation of chirality in a hierarchical supramolecular self-assembled structure with pentagonal symmetry. Angew. Chem. Int. Ed. 44, 5334–5337 (2005).

    Article  CAS  Google Scholar 

  15. Lavoie, S., Laliberte, M. A., Temprano, I. & McBreen, P. H. A generalized two-point H-bonding model for catalytic stereoselective hydrogenation of activated ketones on chirally modified platinum. J. Am. Chem. Soc. 128, 7588–7593 (2006).

    Article  CAS  Google Scholar 

  16. Liu, N., Haq, S., Darling, G. R. & Raval, R. Direct visualization of enantiospecific substitution of chiral guest molecules into heterochiral molecular assemblies at surfaces. Angew. Chem. Int. Ed. 46, 7613–7616 (2007).

    Article  CAS  Google Scholar 

  17. Chen, Q. & Richardson, N. V. Enantiomeric interactions between nucleic acid bases and amino acids on solid surfaces. Nature Mater. 2, 324–328 (2003).

    Article  CAS  Google Scholar 

  18. Lingenfelder, M. et al. Tracking the chiral recognition of adsorbed dipeptides at the single-molecule level. Angew. Chem. Int. Ed. 46, 4492–4495 (2007).

    Article  CAS  Google Scholar 

  19. Switzer, J. A., Kothari, H. M., Poizot, P., Nakanishi, S. & Bohannan, E. W. Enantiospecific electrodeposition of a chiral catalyst. Nature 425, 490–493 (2003).

    Article  CAS  Google Scholar 

  20. Lorenzo, M. O., Baddeley, C. J., Muryn, C. & Raval, R. Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules. Nature 404, 376–379 (2000).

    Article  CAS  Google Scholar 

  21. Lorenzo, M. O. et al. Creating chiral surfaces for enantioselective heterogeneous catalysis: R,R-tartaric acid on Cu(110). J. Phys. Chem. B 103, 10661–10669 (1999).

    Article  CAS  Google Scholar 

  22. Lorenzo, M. O. et al. Chemical transformations, molecular transport, and kinetic barriers in creating the chiral phase of (R,R)-tartaric acid on Cu(110). J. Catal. 205, 123–134 (2002).

    Article  CAS  Google Scholar 

  23. Fasel, R., Wider, J., Quitmann, C., Ernst, K. H. & Greber, T. Determining the absolute chirality of adsorbed molecules. Angew. Chem. Int. Ed. 43, 2853–2856 (2004).

    Article  CAS  Google Scholar 

  24. Barbosa, L. M. M. & Sautet, P. Stability of chiral domains produced by adsorption of tartaric acid isomers on the Cu(110) surface: a periodic density functional theory study. J. Am. Chem. Soc. 123, 6639–6648 (2001).

    Article  CAS  Google Scholar 

  25. Hermse, C. G. M. et al. Formation of chiral domains for tartaric acid on Cu(110): a combined DFT and kinetic Monte Carlo study. J. Phys. Chem. B 108, 11035–11043 (2004).

    Article  CAS  Google Scholar 

  26. Pasteur, L. Recherches sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire. Ann. Chim. Phys. 24, 442–449 (1848).

    Google Scholar 

  27. Kondepudi, D. K. & Crook, K. E. Theory of conglomerate crystallisation in the presence of chiral impurities. Cryst. Growth Design 5, 2173–2179 (2005).

    Article  CAS  Google Scholar 

  28. Kellogg, R. M., Kaptein, B. & Vries, T. R. Dutch resolution of racemates and the roles of solid solution formation and nucleation inhibition. Top. Curr. Chem. 269, 159–198 (2007).

    Article  CAS  Google Scholar 

  29. Coquerel, G. Preferential crystallisation. Top. Curr. Chem. 269, 1–51 (2007).

    CAS  PubMed  Google Scholar 

  30. Green, M. M. et al. Majority rules in the copolymerisation of mirror image isomers. J. Am. Chem. Soc. 117, 4181–4182 (1995).

    Article  CAS  Google Scholar 

  31. van Gestel, J., Palmans, A. R. A., Titulaer, B., Vekemans, J. A. J. M. & Meijer, E.W. ‘Majority-rules’ operative in chiral columnar stacks of C3-symmetrical molecules. J. Am. Chem. Soc. 127, 5490–5494 (2005).

    Article  CAS  Google Scholar 

  32. Avalos, M., Babiano, R., Cintas, P., Jimenez, J. L. & Palacios, J. C. Symmetry breaking by spontaneous crystallization—is it the most plausible source of terrestial handedness we have long been looking for?—A reappraisal. Orig. Life Evol. Bios. 34, 391–405 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful for grants from Engineering and Physical Sciences Research Council, Biotechnology and Biological Sciences Research Council, European Union Marie Curie Research Training Networks CHEXTAN and the European Union Seventh Framework small-scale collaborative project RESOLVE.

Author information

Authors and Affiliations

Authors

Contributions

S.H, N.L and V.H. performed the experiments and analysed the data. A.P.J.J. carried out the theoretical modelling and analysis and co-wrote this section. R.R. conceived and designed the experiments, analysed the data and wrote the paper.

Corresponding author

Correspondence to Rasmita Raval.

Supplementary information

Supplementary information

Supplementary information (PDF 466 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haq, S., Liu, N., Humblot, V. et al. Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces. Nature Chem 1, 409–414 (2009). https://doi.org/10.1038/nchem.295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.295

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing