Abstract
Interfacial supramolecular self-assembly represents a powerful tool for constructing regular and quasicrystalline materials. In particular, complex two-dimensional molecular tessellations, such as semi-regular Archimedean tilings with regular polygons, promise unique properties related to their nontrivial structures. However, their formation is challenging, because current methods are largely limited to the direct assembly of precursors, that is, where structure formation relies on molecular interactions without using chemical transformations. Here, we have chosen ethynyl-iodophenanthrene (which features dissymmetry in both geometry and reactivity) as a single starting precursor to generate the rare semi-regular (3.4.6.4) Archimedean tiling with long-range order on an atomically flat substrate through a multi-step reaction. Intriguingly, the individual chemical transformations converge to form a symmetric alkynyl–Ag–alkynyl complex as the new tecton in high yields. Using a combination of microscopy and X-ray spectroscopy tools, as well as computational modelling, we show that in situ generated catalytic Ag complexes mediate the tecton conversion.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
On-surface synthesis of enetriynes
Nature Communications Open Access 06 March 2023
-
Supramolecular tessellations by the exo-wall interactions of pagoda[4]arene
Nature Communications Open Access 04 November 2021
-
Chemical engineering of quasicrystal approximants in lanthanide-based coordination solids
Nature Communications Open Access 17 September 2020
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives (VCH, 1995).
Moulton, B. & Zaworotko, M. J. From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem. Rev. 101, 1629–1658 (2001).
Kepler, J. Harmonices Mundi (Johannes Planck, 1619).
Millan, J. A., Ortiz, D., van Anders, G. & Glotzer, S. C. Self-assembly of Archimedean tilings with enthalpically and entropically patchy polygons. ACS Nano 8, 2918–2928 (2014).
Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).
Levine, D. & Steinhardt, P. J. Quasicrystals: a new class of ordered structures. Phys. Rev. Lett. 53, 2477–2480 (1984).
Ueda, K., Dotera, T. & Gemma, T. Photonic band structure calculations of two-dimensional Archimedean tiling patterns. Phys. Rev. B 75, 195122 (2007).
Basnarkov, L. & Urumov, V. Diffusion on Archimedean lattices. Phys. Rev. E 73, 046116 (2006).
Ramirez, A. P. Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci. 24, 453–480 (1994).
Tsai, A. P. & Yoshimura, M. Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol. Appl. Catal. A 214, 237–241 (2001).
Zhang, F., Liu, Y. & Yan, H. Complex Archimedean tiling self-assembled from DNA nanostructures. J. Am. Chem. Soc. 135, 7458–7461 (2013).
Zhang, F. et al. Self-assembly of complex DNA tessellations by using low-symmetry multi-arm DNA tiles. Angew. Chem. Int. Ed. 128, 9006–9009 (2016).
Tschierske, C. Liquid crystal engineering—new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem. Soc. Rev. 36, 1930–1970 (2007).
Talapin, D. V. et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009).
Asari, T., Arai, S., Takano, A. & Matsushita, Y. Archimedean tiling structures from ABA/CD block copolymer blends having intermolecular association with hydrogen bonding. Macromolecules 39, 2232–2237 (2006).
Hayashida, K., Dotera, T., Takano, A. & Matsushita, Y. Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers. Phys. Rev. Lett. 98, 195502 (2007).
Barth, J. V., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).
Elemans, J. A. A. W., Lei, S. B. & De Feyter, S. Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. Angew. Chem. Int. Ed. 48, 7298–7332 (2009).
Bartels, L. Tailoring molecular layers at metal surfaces. Nat. Chem. 2, 87–95 (2010).
Dong, L., Gao, Z. A. & Lin, N. Self-assembly of metal–organic coordination structures on surfaces. Prog. Surf. Sci. 91, 101–135 (2016).
Klappenberger, F. Two-dimensional functional molecular nanoarchitectures—complementary investigations with scanning tunneling microscopy and X-ray spectroscopy. Prog. Surf. Sci. 89, 1–55 (2014).
Tahara, K. et al. Two-dimensional porous molecular networks of dehydrobenzo[12]annulene derivatives via alkyl chain interdigitation. J. Am. Chem. Soc. 128, 16613–16625 (2006).
Schlickum, U. et al. Chiral Kagomé lattice from simple ditopic molecular bricks. J. Am. Chem. Soc. 130, 11778–11782 (2008).
Ecija, D. et al. Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly. Proc. Natl Acad. Sci. USA 110, 6678–6681 (2013).
Shi, Z. L. & Lin, N. Porphyrin-based two-dimensional coordination Kagome lattice self-assembled on a Au(111) surface. J. Am. Chem. Soc. 131, 5376–5377 (2009).
Wasio, N. A. et al. Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature 507, 86–89 (2014).
Urgel, J. I. et al. Quasicrystallinity expressed in two-dimensional coordination networks. Nat. Chem. 8, 657–662 (2016).
Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).
Otero, R. et al. Elementary structural motifs in a random network of cytosine adsorbed on a gold(111) surface. Science 319, 312–315 (2008).
Marschall, M. et al. Random two-dimensional string networks based on divergent coordination assembly. Nat. Chem. 2, 131–137 (2010).
Newkome, G. R. et al. Nanoassembly of a fractal polymer: a molecular ‘Sierpinski hexagonal gasket’. Science 312, 1782–1785 (2006).
Shang, J. et al. Assembling molecular Sierpiński triangle fractals. Nat. Chem. 7, 389–393 (2015).
Pivetta, M., Blüm, M.-C., Patthey, F. & Schneider, W.-D. Two-dimensional tiling by rubrene molecules self-assembled in supramolecular pentagons, hexagons, and heptagons on a Au(111) surface. Angew. Chem. Int. Ed. 47, 1076–1079 (2008).
Guillermet, O. et al. Self-assembly of fivefold-symmetric molecules on a threefold-symmetric surface. Angew. Chem. Int. Ed. 48, 1970–1973 (2009).
Bauert, T. et al. Building 2D crystals from 5-fold-symmetric molecules. J. Am. Chem. Soc. 131, 3460–3461 (2009).
Lehn, J.-M. Perspectives in chemistry—steps towards complex matter. Angew. Chem. Int. Ed. 52, 2836–2850 (2013).
Nishio, M. CH/π hydrogen bonds in crystals. CrystEngComm 6, 130–158 (2004).
Bui, T. T. T., Dahaoui, S., Lecomte, C., Desiraju, G. R. & Espinosa, E. The nature of halogen···halogen interactions: a model derived from experimental charge-density analysis. Angew. Chem. Int. Ed. 48, 3838–3841 (2009).
Cavallo, G. et al. The halogen bond. Chem. Rev. 116, 2478–2601 (2016).
Brammer, L., Zhao, D., Ladipo, F. T. & Braddock-Wilking, J. Hydrogen bonds involving transition-metal centers—a brief review. Acta Crystallogr. B 51, 632–640 (1995).
Braga, D., Grepioni, F. & Desiraju, G. R. Crystal engineering and organometallic architecture. Chem. Rev. 98, 1375–1406 (1998).
Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41, 48–76 (2002).
Zhang, Y.-Q. et al. Unusual deprotonated alkynyl hydrogen bonding in metal-supported hydrocarbon assembly. J. Phys. Chem. C 119, 9669–9679 (2015).
Raval, R. Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques. Chem. Soc. Rev. 38, 707–721 (2009).
Zhou, X.-L. & White, J. M. Thermal decomposition of C2H5I on Ag(111). Catal. Lett. 2, 375–384 (1989).
Zhang, Y.-Q. et al. Homo-coupling of terminal alkynes on a noble metal surface. Nat. Commun. 3, 1286 (2012).
Di Giovannantonio, M. et al. Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined Ullmann polymerization. ACS Nano 7, 8190–8198 (2013).
Sun, Q. et al. Bottom-up synthesis of metalated carbyne. J. Am. Chem. Soc. 138, 1106–1109 (2016).
Zhou, X.-L., White, J. M. & Koel, B. E. Chemisorption of atomic hydrogen on clean and Cl-covered Ag(111). Surf. Sci. 218, 201–210 (1989).
Lee, G. & Plummer, E. W. Interaction of hydrogen with the Ag(111) surface. Phys. Rev. B 51, 7250–7261 (1995).
Fronzoni, G. et al. Vibrationally resolved high-resolution NEXAFS and XPS spectra of phenanthrene and coronene. J. Chem. Phys. 141, 044313 (2014).
Zhang, H. & Chi, L. Gold–organic hybrids: on-surface synthesis and perspectives. Adv. Mater. 28, 10492–10498 (2016).
Lackinger, M. Surface-assisted Ullmann coupling. Chem. Commun. 53, 7872–7885 (2017).
Björk, J., Zhang, Y.-Q., Klappenberger, F., Barth, J. V. & Stafström, S. Unraveling the mechanism of the covalent coupling between terminal alkynes on a noble metal. J. Phys. Chem. C 118, 3181–3187 (2014).
Liu, J. et al. Lattice-directed formation of covalent and organometallic molecular wires by terminal alkynes on Ag surfaces. ACS Nano 9, 6305–6314 (2015).
Kanuru, V. K. et al. Sonogashira coupling on an extended gold surface in vacuo: reaction of phenylacetylene with iodobenzene on Au(111). J. Am. Chem. Soc. 132, 8081–8086 (2010).
VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).
Bacle, P., Seitsonen, A. P., Iannuzzi, M. & Hutter, J. Chemical reactions on metal-supported hexagonal boron nitride investigated with density functional theory. Chimia 68, 596–601 (2014).
Lippert, G., Hutter, J. & Parrinello, M. A hybrid Gaussian and plane wave density functional scheme. Mol. Phys. 92, 477–488 (1997).
VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).
Hamada, I. Van der Waals density functional made accurate. Phys. Rev. B 89, 121103 (2014).
Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).
Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012).
Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Acknowledgements
The authors acknowledge funding by the German Research Foundation (DFG) Excellence Cluster Munich Center for Advanced Photonics, DFG project KL 2294/3–1 and ERC Advanced Grant MolArt (no. 247299). M.R. acknowledges support by the DFG-priority programs 1459, TR88 ‘3Met’ and the KNMF facility (KIT, Germany). The authors thank the Helmholtz–Zentrum Berlin–Electron storage ring BESSY II for provision of synchrotron radiation at beamline HE-SGM and thank C. Wöll and A. Nefedov for providing access to the HE-SGM end station.
Author information
Authors and Affiliations
Contributions
Y.-Q.Z., J.V.B. and F.K. conceived the experiments. Y.-Q.Z., L.Z. and T.L. performed the STM measurements and analysed the data. Y.-Q.Z., M.P., L.Z., T.L. and F.K. performed the spectroscopy experiments and analysed the data. A.P.S. carried out the DFT calculations. P.D., Z.C., S.K. and M.R. developed the synthesis of the molecules used. Y.-Q.Z., A.P.S., M.R., J.V.B. and F.K. co-wrote the paper. All authors discussed the results and commented on the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 38285 kb)
Supplementary movie
Supplementary movie 1 (MOV 1716 kb)
Supplementary movie
Supplementary movie 2 (MOV 2282 kb)
Supplementary information
Crystallographic data for compound 3'. (CIF 490 kb)
Rights and permissions
About this article
Cite this article
Zhang, YQ., Paszkiewicz, M., Du, P. et al. Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor. Nature Chem 10, 296–304 (2018). https://doi.org/10.1038/nchem.2924
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.2924
This article is cited by
-
On-surface synthesis of enetriynes
Nature Communications (2023)
-
Chiral self-assembly of terminal alkyne and selenium clusters organic-inorganic hybrid
Nano Research (2022)
-
Supramolecular tessellations by the exo-wall interactions of pagoda[4]arene
Nature Communications (2021)
-
Identifying the convergent reaction path from predesigned assembled structures: Dissymmetrical dehalogenation of Br2Py on Ag(111)
Nano Research (2021)
-
Chemical engineering of quasicrystal approximants in lanthanide-based coordination solids
Nature Communications (2020)