Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct observation of the influence of cardiolipin and antibiotics on lipid II binding to MurJ


Translocation of lipid II across the cytoplasmic membrane is essential in peptidoglycan biogenesis. Although most steps are understood, identifying the lipid II flippase has yielded conflicting results, and the lipid II binding properties of two candidate flippases—MurJ and FtsW—remain largely unknown. Here we apply native mass spectrometry to both proteins and characterize lipid II binding. We observed lower levels of lipid II binding to FtsW compared to MurJ, consistent with MurJ having a higher affinity. Site-directed mutagenesis of MurJ suggests that mutations at A29 and D269 attenuate lipid II binding to MurJ, whereas chemical modification of A29 eliminates binding. The antibiotic ramoplanin dissociates lipid II from MurJ, whereas vancomycin binds to form a stable complex with MurJ:lipid II. Furthermore, we reveal cardiolipins associate with MurJ but not FtsW, and exogenous cardiolipins reduce lipid II binding to MurJ. These observations provide insights into determinants of lipid II binding to MurJ and suggest roles for endogenous lipids in regulating substrate binding.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic representation of PG biosynthesis and assays used to measure the translocation of lipid II.
Figure 2: Mass spectra of MurJ and FtsW before and after addition of lipid II.
Figure 3: Determination of dissociation constants for lipid II binding to MurJ.
Figure 4: Structure of lipid II showing binding sites for antibiotics and mass spectra recorded after addition of antibiotics to MurJ and the Mur:lipid II complex.
Figure 5: Structures of MurJ with residues investigated through mutation, their effects on lipid II binding and spectra recorded for wild type and A29C after treating with MTSES in the presence of lipid II.
Figure 6: Mass spectra reveal the effect of increasing CDL concentration on lipid II binding to MurJ.
Figure 7: Schematic representation of the competition for lipid II binding between proteins, formation of a ternary complex with the antibiotic vancomycin, and interplay between CDL and lipid II binding to MurJ.

Accession codes


Protein Data Bank


  1. 1

    Silhavy, T. J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).

    PubMed  PubMed Central  Google Scholar 

  2. 2

    de Kruijff, B., van Dam, V. & Breukink, E. Lipid II: a central component in bacterial cell wall synthesis and a target for antibiotics. Prostaglandins Leukot. Essent. Fatty Acids 79, 117–121 (2008).

    CAS  PubMed  Google Scholar 

  3. 3

    van Heijenoort, J. Lipid intermediates in the biosynthesis of bacterial peptidoglycan. Microbiol. Mol. Biol. Rev. 71, 620–635 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Schneider, T. & Sahl, H.-G. G. An oldie but a goodie—cell wall biosynthesis as antibiotic target pathway. Int. J. Med. Microbiol. 300, 161–169 (2010).

    CAS  PubMed  Google Scholar 

  5. 5

    Galley, N. F., O'Reilly, A. M. & Roper, D. I. Prospects for novel inhibitors of peptidoglycan transglycosylases. Bioorg. Chem. 55, 16–26 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Münch, D. & Sahl, H.-G. G. Structural variations of the cell wall precursor lipid II in Gram-positive bacteria—impact on binding and efficacy of antimicrobial peptides. Biochim. Biophys. Acta 1848, 3062–3071 (2015).

    PubMed  Google Scholar 

  7. 7

    Draper, L. A., Cotter, P. D., Hill, C. & Ross, R. P. Lantibiotic resistance. Microbiol. Mol. Biol. Rev. 79, 171–191 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

    CAS  PubMed  Google Scholar 

  9. 9

    Scheffers, D. J. & Tol, M. B. LipidII: just another brick in the wall? PLoS Pathog. 11, e1005213 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. 10

    Ruiz, N. Lipid flippases for bacterial peptidoglycan biosynthesis. Lipid Insights 8, 21–31 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. 11

    Ruiz, N. Filling holes in peptidoglycan biogenesis of Escherichia coli. Curr. Opin. Microbiol. 34, 1–6 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Mohammadi, T. et al. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J. 30, 1425–1432 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Sham, L.-T. T. et al. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345, 220–222 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Mohammadi, T. et al. Specificity of the transport of lipid II by FtsW in Escherichia coli. J. Biol. Chem. 289, 14707–14718 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Inoue, A. et al. Involvement of an essential gene, mviN, in murein synthesis in Escherichia coli. J. Bacteriol. 190, 7298–7301 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Ruiz, N. Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc. Natl Acad. Sci. USA 105, 15553–15557 (2008).

    CAS  PubMed  Google Scholar 

  17. 17

    Kuk, A. C., Mashalidis, E. H. & Lee, S. Y. Crystal structure of the MOP flippase MurJ in an inward-facing conformation. Nat. Struct. Mol. Biol. 24, 171–176 (2017).

    CAS  PubMed  Google Scholar 

  18. 18

    Meeske, A. J. et al. MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis. Proc. Natl Acad. Sci. USA 112, 6437–6442 (2015).

    CAS  PubMed  Google Scholar 

  19. 19

    Meeske, A. J. et al. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 537, 634–638 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Emami, K. et al. RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nat. Microbiol. 2, 16253 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Leclercq, S. et al. Interplay between penicillin-binding proteins and SEDS proteins promotes bacterial cell wall synthesis. Sci. Rep. 7, 43306 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510, 172–175 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Allison, T. M. et al. Quantifying the stabilizing effects of protein–ligand interactions in the gas phase. Nat. Commun. 6, 8551 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Gault, J. et al. High-resolution mass spectrometry of small molecules bound to membrane proteins. Nat. Methods 13, 333–336 (2016).

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Mehmood, S. et al. Mass spectrometry captures off-target drug binding and provides mechanistic insights into the human metalloprotease ZMPSTE24. Nat. Chem. 8, 1152–1158 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Bechara, C. et al. A subset of annular lipids is linked to the flippase activity of an ABC transporter. Nat. Chem. 7, 255–262 (2015).

    CAS  PubMed  Google Scholar 

  27. 27

    Gupta, K. et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Reading, E. et al. The role of the detergent micelle in preserving the structure of membrane proteins in the gas phase. Angew. Chem. Int. Ed. 54, 4577–4581 (2015).

    CAS  Google Scholar 

  29. 29

    Reading, E. et al. The effect of detergent, temperature, and lipid on the oligomeric state of MscL constructs: insights from mass spectrometry. Chem. Biol. 22, 593–603 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    van Heijenoort, Y., Gómez, M., Derrien, M., Ayala, J. & van Heijenoort, J. Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3. J. Bacteriol. 174, 3549–3557 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    He, X. et al. Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature 467, 991–994 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Lu, M., Radchenko, M., Symersky, J., Nie, R. & Guo, Y. Structural insights into H+-coupled multidrug extrusion by a MATE transporter. Nat. Struct. Mol. Biol. 20, 1310–1317 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Lu, M. et al. Structures of a Na+-coupled, substrate-bound MATE multidrug transporter. Proc. Natl Acad. Sci. USA 110, 2099–2104 (2013).

    CAS  PubMed  Google Scholar 

  34. 34

    Tanaka, Y. et al. Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature 496, 247–251 (2013).

    CAS  PubMed  Google Scholar 

  35. 35

    Jin, Y., Nair, A. & van Veen, H. W. Multidrug transport protein NorM from Vibrio cholerae simultaneously couples to sodium- and proton-motive force. J. Biol. Chem. 289, 14624–14632 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Zilberstein, D., Agmon, V., Schuldiner, S. & Padan, E. Escherichia coli intracellular pH, membrane potential, and cell growth. J. Bacteriol. 158, 246–252 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Walker, S. et al. Chemistry and biology of ramoplanin: a lipoglycodepsipeptide with potent antibiotic activity. Chem. Rev. 105, 449–476 (2005).

    CAS  PubMed  Google Scholar 

  38. 38

    Breukink, E. & de Kruijff, B. Lipid II as a target for antibiotics. Nat. Rev. Drug Discov. 5, 321–332 (2006).

    CAS  PubMed  Google Scholar 

  39. 39

    Hamburger, J. B. et al. A crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential lipid II docking interface. Proc. Natl Acad. Sci. USA 106, 13759–13764 (2009).

    CAS  PubMed  Google Scholar 

  40. 40

    Garrett, T. A., O'Neill, A. C. & Hopson, M. L. Quantification of cardiolipin molecular species in Escherichia coli lipid extracts using liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass. Spectrom. 26, 2267–2274 (2012).

    CAS  PubMed  Google Scholar 

  41. 41

    Mileykovskaya, E. & Dowhan, W. Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim. Biophys. Acta 1788, 2084–2091 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Kagan, V. E. et al. NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of deploarized mitochondria by mitophagy. Cell Death Diff. 23, 1140–1151 (2016).

    CAS  Google Scholar 

  43. 43

    Mukopadhyay, K. et al. In vitro susceptibility of Staphyococcus aureus to thrombin-induced platelet microbicidal protein-1 (tPMP-1) is influenced by cell membrane phospholipid composition and asymmetry. Microbiology 153, 1187–1197 (2007).

    Google Scholar 

  44. 44

    Rosado, H., Turner, R. D., Foster, S. J. & Taylor, P. W. Impact of the β-lactam resistance modifier (−)-epicatechin gallate on the non-random distribution of phospholipids across the cytoplasmic membrane of Staphylococcus aureus. Int. J. Mol. Sci. 16, 16710–16727 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Hernández, H. & Robinson, C. V. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat. Protoc. 2, 715–726 (2007).

    PubMed  Google Scholar 

  46. 46

    Bird, S. S., Marur, V. R., Sniatynski, M. J., Greenberg, H. K. & Kristal, B. S. Lipidomics profiling by high-resolution LC-MS and high-energy collisional dissociation fragmentation: focus on characterization of mitochondrial cardiolipins and monolysocardiolipins. Anal. Chem. 83, 940–949 (2011).

    CAS  PubMed  Google Scholar 

Download references


The authors acknowledge funding from an MRC programme grant (MR/N020413/1), an ERC Advanced Grant ENABLE (641317) and a Wellcome Trust Investigator Award (104633/Z/14/Z). The authors thank W. Vollmer for providing C55-P and H.-Y. Yen, J. Gault and M. Agasid for useful discussions.

Author information




J.R.B. and C.V.R. conceived and designed the experiments. J.R.B designed primers and generated the constructs for protein expression. J.R.B and J.B.S. expressed and purified the proteins. J.R.B. optimized the MS conditions and obtained all MS measurements. J.R.B. performed lipidomics analysis with the help of D.W.S.M. and T.M.A. assisted with data analysis. J.R.B. and C.V.R wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Carol V. Robinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1618 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bolla, J., Sauer, J., Wu, D. et al. Direct observation of the influence of cardiolipin and antibiotics on lipid II binding to MurJ. Nature Chem 10, 363–371 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing