Ultrafast dynamics of low-energy electron attachment via a non-valence correlation-bound state

Abstract

The primary electron-attachment process in electron-driven chemistry represents one of the most fundamental chemical transformations with wide-ranging importance in science and technology. However, the mechanistic detail of the seemingly simple reaction of an electron and a neutral molecule to form an anion remains poorly understood, particularly at very low electron energies. Here, time-resolved photoelectron imaging was used to probe the electron-attachment process to a non-polar molecule using time-resolved methods. An initially populated diffuse non-valence state of the anion that is bound by correlation forces evolves coherently in 30 fs into a valence state of the anion. The extreme efficiency with which the correlation-bound state serves as a doorway state for low-energy electron attachment explains a number of electron-driven processes, such as anion formation in the interstellar medium and electron attachment to fullerenes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Photoelectron spectra of I·C6F6.
Figure 2: Time-resolved dynamics of I·C6F6 after excitation at 3.10 eV.
Figure 3: Schematic energy-level diagram and molecular orbitals involved in electron capture.

References

  1. 1

    Christophorou, L. Electron–Molecule Interactions and their Applications (Academic, 1984).

    Google Scholar 

  2. 2

    Hotop, H., Ruf, M.-W., Allan, M. & Fabrikant, I. I. Resonance and threshold phenomena in low-energy electron collisions with molecules and clusters. Adv. At. Mol. Opt. Phys. 49, 85–216 (2003).

    CAS  Google Scholar 

  3. 3

    Schulz, G. J. Resonances in electron impact on diatomic molecules. Rev. Mod. Phys. 45, 423–486 (1973).

    CAS  Google Scholar 

  4. 4

    Desfrançois, C., Abdoul-Carime, H., Khelifa, N. & Schermann, J. P. From 1/r to 1/r2 potentials: electron exchange between Rydberg atoms and polar molecules. Phys. Rev. Lett. 73, 2436–2439 (1994).

    PubMed  Google Scholar 

  5. 5

    Sommerfeld, T. Dipole-bound states as doorways in (dissociative) electron attachment. J. Phys. Conf. Ser. 4, 245 (2005).

    CAS  Google Scholar 

  6. 6

    Schramm, A. et al. Vibrational resonance and threshold effects in inelastic electron collisions with methyl iodide molecules. J. Phys. B 32, 2153 (1999).

    CAS  Google Scholar 

  7. 7

    Mead, R. D., Lykke, K. R., Lineberger, W. C., Marks, J. & Brauman, J. I. Spectroscopy and dynamics of the dipole-bound state of acetaldehyde enolate. J. Chem. Phys. 81, 4883–4892 (1984).

    CAS  Google Scholar 

  8. 8

    Dessent, C. E. H., Kim, J. & Johnson, M. A. Spectroscopic observation of vibrational Feshbach resonances in near-threshold photoexcitation of X·CH3NO2 (X = I and Br). Faraday Discuss. 115, 395–406 (2000).

    CAS  Google Scholar 

  9. 9

    Jordan, K. D. & Wang, F. Theory of dipole-bound anions. Annu. Rev. Phys. Chem. 54, 367–396 (2003).

    CAS  PubMed  Google Scholar 

  10. 10

    Simons, J. Molecular anions. J. Phys. Chem. A 112, 6401–6511 (2008).

    CAS  PubMed  Google Scholar 

  11. 11

    Weber, J. M., Ruf, M.-W. & Hotop, H. Rydberg electron transfer to C60 and C70 . Z. Phys. At. Mol. Clust. 37, 351–357 (1996).

    CAS  Google Scholar 

  12. 12

    Finch, C. D., Popple, R. A., Nordlander, P. & Dunning, F. B. Formation of long-lived C60 ions in Rydberg atom–C60 collisions. Chem. Phys. Lett. 244, 345–349 (1995).

    CAS  Google Scholar 

  13. 13

    Sommerfeld, T., Bhattarai, B., Vysotskiy, V. P. & Cederbaum, L. S. Correlation-bound anions of NaCl clusters. J. Chem. Phys. 133, 114301 (2010).

    PubMed  Google Scholar 

  14. 14

    Simons, J. & Gutowski, M. Double-Rydberg molecular anions. Chem. Rev. 91, 669–677 (1991).

    CAS  Google Scholar 

  15. 15

    Sommerfeld, T., Dreux, K. M. & Joshi, R. Excess electrons bound to molecular systems with a vanishing dipole but large molecular quadrupole. J. Phys. Chem. A 118, 7320–7329 (2014).

    CAS  PubMed  Google Scholar 

  16. 16

    Sommerfeld, T. Excess electrons bound to small ammonia clusters. J. Phys. Chem. A 112, 11817–11823 (2008).

    CAS  PubMed  Google Scholar 

  17. 17

    Sommerfeld, T. Multipole-bound states of succinonitrile and other dicarbonitriles. J. Chem. Phys. 121, 4097–4104 (2004).

    CAS  PubMed  Google Scholar 

  18. 18

    Snodgrass, J. T., Coe, J. V., Freidhoff, C. B., McHugh, K. M. & Bowen, K. H. Photodetachment spectroscopy of cluster anions. Photoelectron spectroscopy of H(NH3)1, H(NH3)2 and the tetrahedral isomer of NH4. Faraday Discuss. Chem. Soc. 86, 241–256 (1988).

    CAS  Google Scholar 

  19. 19

    Bull, J. N. & Verlet, J. R. R. Observation and ultrafast dynamics of a nonvalence correlation-bound state of an anion. Sci. Adv. 3, e1603106 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Klaiman, S., Gromov, E. V. & Cederbaum, L. S. All for one and one for all: accommodating an extra electron in C60 . Phys. Chem. Chem. Phys. 16, 13287–13293 (2014).

    CAS  PubMed  Google Scholar 

  21. 21

    Bezchastnov, V. G., Vysotskiy, V. P. & Cederbaum, L. S. Anions of xenon clusters bound by long-range electron correlations. Phys. Rev. Lett. 107, 133401 (2011).

    PubMed  Google Scholar 

  22. 22

    Voora, V. K., Cederbaum, L. S. & Jordan, K. D. Existence of a correlation bound S-type anion state of C60 . J. Phys. Chem. Lett. 4, 849–853 (2013).

    CAS  PubMed  Google Scholar 

  23. 23

    Klaiman, S., Gromov, E. V. & Cederbaum, L. S. Extreme correlation effects in the elusive bound spectrum of C60. J. Phys. Chem. Lett. 4, 3319–3324 (2013).

    CAS  Google Scholar 

  24. 24

    Voora, V. K. & Jordan, K. D. Nonvalence correlation-bound anion state of C6F6: doorway to low-energy electron capture. J. Phys. Chem. A 118, 7201–7205 (2014).

    CAS  PubMed  Google Scholar 

  25. 25

    Voora, V. K. & Jordan, K. D. Nonvalence correlation-bound anion states of polycyclic aromatic hydrocarbons. J. Phys. Chem. Lett. 6, 3994–3997 (2015).

    CAS  PubMed  Google Scholar 

  26. 26

    Gahl, C., Ishioka, K., Zhong, Q., Hotzel, A. & Wolf, M. Structure and dynamics of excited electronic states at the adsorbate/metal interface: C6F6/Cu(111). Faraday Discuss. 117, 191–202 (2000).

    CAS  Google Scholar 

  27. 27

    Dougherty, D. B., Feng, M., Petek, H., Yates, J. T. & Zhao, J. Band formation in a molecular quantum well via 2D superatom orbital interactions. Phys. Rev. Lett. 109, 266802 (2012).

    PubMed  Google Scholar 

  28. 28

    Field, D., Jones, N. C. & Ziesel, J.-P. Cold electron scattering in SF6 and C6F6: bound and virtual state channels. Phys. Rev. A 69, 052716 (2004).

    Google Scholar 

  29. 29

    Suess, L., Parthasarathy, R. & Dunning, F. B. Nondissociative low-energy electron attachment to SF6, C6F6, C10F8, and c-C7F14: negative ion lifetimes. J. Chem. Phys. 117, 11222–11227 (2002).

    CAS  Google Scholar 

  30. 30

    Dessent, C. E. H., Kim, J. & Johnson, M. A. Photochemistry of halide ion−molecule clusters: dipole-bound excited states and the case for asymmetric solvation. Acc. Chem. Res. 31, 527–534 (1998).

    CAS  Google Scholar 

  31. 31

    Lehr, L., Zanni, M. T., Frischkorn, C., Weinkauf, R. & Neumark, D. M. Electron solvation in finite systems: femtosecond dynamics of iodide·(water)n anion clusters. Science 284, 635–638 (1999).

    CAS  PubMed  Google Scholar 

  32. 32

    Lecointre, J., Roberts, G. M., Horke, D. A. & Verlet, J. R. R. Ultrafast relaxation dynamics observed through time-resolved photoelectron angular distributions. J. Phys. Chem. A 114, 11216–11224 (2010).

    CAS  PubMed  Google Scholar 

  33. 33

    Stolow, A., Bragg, A. E. & Neumark, D. M. Femtosecond time-resolved photoelectron spectroscopy. Chem. Rev. 104, 1719–1758 (2004).

    CAS  PubMed  Google Scholar 

  34. 34

    Bailey, C. G., Dessent, C. E. H., Johnson, M. A. & Bowen, K. H. Vibronic effects in the photon energy-dependent photoelectron spectra of the CH3CN dipole-bound anion. J. Chem. Phys. 104, 6976–6983 (1996).

    CAS  Google Scholar 

  35. 35

    Steele, D. & Whiffen, D. H. The vibrational frequencies of hexafluorobenzene. Trans. Faraday Soc. 55, 369–376 (1959).

    CAS  Google Scholar 

  36. 36

    Mbaiwa, F., Van Duzor, M., Wei, J. & Mabbs, R. Direct and indirect detachment in the iodide−pyrrole cluster anion: the role of dipole bound and neutral cluster states. J. Phys. Chem. A 114, 1539–1547 (2010).

    CAS  PubMed  Google Scholar 

  37. 37

    King, S. B. et al. Electron accommodation dynamics in the DNA base thymine. J. Chem. Phys. 143, 024312 (2015).

    PubMed  Google Scholar 

  38. 38

    Miller, T. M., Van Doren, J. M. & Viggiano, A. A. Electron attachment and detachment: C6F6 . Int. J. Mass Spectrom. 233, 67–73 (2004).

    CAS  Google Scholar 

  39. 39

    Nakajima, A. et al. Photoelectron spectroscopy of (C6F6)n and (Au–C6F6) clusters. Chem. Phys. Lett. 214, 22–26 (1993).

    CAS  Google Scholar 

  40. 40

    Eustis, S. N., Wang, D., Bowen, K. H. & Naresh Patwari, G. Photoelectron spectroscopy of hydrated hexafluorobenzene anions. J. Chem. Phys. 127, 114312 (2007).

    PubMed  Google Scholar 

  41. 41

    Mbaiwa, F., Wei, J., Van Duzor, M. & Mabbs, R. Threshold effects in ICH3CN and IH2O cluster anion detachment: the angular distribution as an indicator of electronic autodetachment. J. Chem. Phys. 132, 134304 (2010).

    PubMed  Google Scholar 

  42. 42

    Mbaiwa, F., Dao, D., Holtgrewe, N., Lasinski, J. & Mabbs, R. Inter-channel effects in monosolvated atomic iodide cluster anion detachment: correlation of the anisotropy parameter with solvent dipole moment. J. Chem. Phys. 136, 114303 (2012).

    PubMed  Google Scholar 

  43. 43

    Weber, J. M., Leber, E., Ruf, M.-W. & Hotop, H. Nuclear-excited Feshbach resonances in electron attachment to molecular clusters. Phys. Rev. Lett. 82, 516–519 (1999).

    CAS  Google Scholar 

  44. 44

    Dessent, C. E. H., Bailey, C. G. & Johnson, M. A. On the vibrational fine structure in the near-threshold photofragmentation spectrum of the ICH3I complex: spectroscopic observation of nonadiabatic effects in electron–molecule scattering. J. Chem. Phys. 105, 10416–10423 (1996).

    CAS  Google Scholar 

  45. 45

    Roberts, G. M., Nixon, J. L., Lecointre, J., Wrede, E. & Verlet, J. R. R. Toward real-time charged-particle image reconstruction using polar onion-peeling. Rev. Sci. Instrum. 80, 053104 (2009).

    CAS  PubMed  Google Scholar 

  46. 46

    Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).

    CAS  Google Scholar 

  47. 47

    Yanai, T., Tew, D. P. & Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).

    CAS  Google Scholar 

  48. 48

    Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).

    CAS  Google Scholar 

  49. 49

    Peach, M. J. G., Tellgren, E. I., Sałek, P., Helgaker, T. & Tozer, D. J. Structural and electronic properties of polyacetylene and polyyne from hybrid and Coulomb-attenuated density functionals. J. Phys. Chem. A 111, 11930–11935 (2007).

    CAS  PubMed  Google Scholar 

  50. 50

    Cohen, A. J., Mori-Sánchez, P. & Yang, W. Insights into current limitations of density functional theory. Science 321, 792–794 (2008).

    CAS  PubMed  Google Scholar 

  51. 51

    Sherrill, C. D. Frontiers in electronic structure theory. J. Chem. Phys. 132, 110902 (2010).

    PubMed  Google Scholar 

  52. 52

    Peterson, K. A., Shepler, B. C., Figgen, D. & Stoll, H. On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. J. Phys. Chem. A 110, 13877–13883 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. N. Bull for his valuable contribution in building the experiment that enabled this work. This work was funded by the European Research Council under Starting Grant 306536.

Author information

Affiliations

Authors

Contributions

J.R.R.V. conceived the experiments. J.P.R. conducted the experiments and C.S.A. the calculations. J.P.R., C.S.A. and J.R.R.V. analysed the data and discussed the results. J.R.R.V. wrote the manuscript with contributions from J.P.R. and C.S.A.

Corresponding author

Correspondence to Jan R. R. Verlet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 658 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rogers, J., Anstöter, C. & Verlet, J. Ultrafast dynamics of low-energy electron attachment via a non-valence correlation-bound state. Nature Chem 10, 341–346 (2018). https://doi.org/10.1038/nchem.2912

Download citation

Further reading