Abstract
Mass spectrometry (MS) has become a crucial technique for the analysis of protein complexes. Native MS has traditionally examined protein subunit arrangements, while proteomics MS has focused on sequence identification. These two techniques are usually performed separately without taking advantage of the synergies between them. Here we describe the development of an integrated native MS and top-down proteomics method using Fourier-transform ion cyclotron resonance (FTICR) to analyse macromolecular protein complexes in a single experiment. We address previous concerns of employing FTICR MS to measure large macromolecular complexes by demonstrating the detection of complexes up to 1.8 MDa, and we demonstrate the efficacy of this technique for direct acquirement of sequence to higher-order structural information with several large complexes. We then summarize the unique functionalities of different activation/dissociation techniques. The platform expands the ability of MS to integrate proteomics and structural biology to provide insights into protein structure, function and regulation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Sharon, M. How far can we go with structural mass spectrometry of protein complexes? J. Am. Soc. Mass Spectrom. 21, 487–500 (2010).
Heck, A. J. R. Native mass spectrometry: a bridge between interactomics and structural biology. Nat. Methods 5, 927–933 (2008).
Lorenzen, K. & Duijn, E. v. Current Protocols in Protein Science (Wiley, 2001).
Van Duijn, E. Current limitations in native mass spectrometry based structural biology. J. Am. Soc. Mass Spectrom. 21, 971–978 (2010).
Benesch, J. L. P., Ruotolo, B. T., Simmons, D. A. & Robinson, C. V. Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem. Rev. 107, 3544–3567 (2007).
Snijder, J., Rose, R. J., Veesler, D., Johnson, J. E. & Heck, A. J. R. Studying 18 MDa virus assemblies with native mass spectrometry. Angew. Chem. Int. Ed. 52, 4020–4023 (2013).
Van Berkel, W. J. H., Van Den Heuvel, R. H. H., Versluis, C. & Heck, A. J. R. Detection of intact megaDalton protein assemblies of vanillyl-alcohol oxidase by mass spectrometry. Protein Sci. 9, 435–439 (2000).
Rose, R. J., Damoc, E., Denisov, E., Makarov, A. & Heck, A. J. R. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods 9, 1084–1086 (2012).
Van de Waterbeemd, M. et al. High-fidelity mass analysis unveils heterogeneity in intact ribosomal particles. Nat. Methods 14, 283–286 (2017).
Snijder, J. et al. Defining the stoichiometry and cargo load of viral and bacterial nanoparticles by orbitrap mass spectrometry. J. Am. Chem. Soc. 136, 7295–7299 (2014).
Gault, J. et al. High-resolution mass spectrometry of small molecules bound to membrane proteins. Nat. Methods 13, 333–336 (2016).
Dyachenko, A. et al. Tandem native mass-spectrometry on antibody–drug conjugates and submillion Da antibody–antigen protein assemblies on an Orbitrap EMR equipped with a high-mass quadrupole mass selector. Anal. Chem. 87, 6095–6102 (2015).
Rosati, S., Yang, Y., Barendregt, A. & Heck, A. J. R. Detailed mass analysis of structural heterogeneity in monoclonal antibodies using native mass spectrometry. Nat. Protoc. 9, 967–976 (2014).
Walzthoeni, T., Leitner, A., Stengel, F. & Aebersold, R. Mass spectrometry supported determination of protein complex structure. Curr. Opin. Struct. Biol. 23, 252–260 (2013).
Shi, Y. et al. Structural characterization by cross-linking reveals the detailed architecture of a coatomer-related heptameric module from the nuclear pore complex. Mol. Cell Proteomics 13, 2927–2943 (2014).
Savaryn, J., Catherman, A., Thomas, P., Abecassis, M. & Kelleher, N. The emergence of top-down proteomics in clinical research. Genome Med. 5, 53 (2013).
Smith, L. M. & Kelleher, N. L. Proteoform: a single term describing protein complexity. Nat. Methods 10, 186–187 (2013).
Li, H. et al. Use of top-down and bottom-up Fourier transform ion cyclotron resonance mass spectrometry for mapping calmodulin sites modified by platinum anticancer drugs. Anal. Chem. 83, 9507–9515 (2011).
Siuti, N. & Kelleher, N. L. Decoding protein modifications using top-down mass spectrometry. Nat. Methods 4, 817–821 (2007).
Tian, Z. et al. Enhanced top-down characterization of histone post-translational modifications. Genome Biol. 13, R86 (2012).
Xie, Y., Zhang, J., Yin, S. & Loo, J. A. Top-down ESI-ECD-FT-ICR mass spectrometry localizes noncovalent protein–ligand binding sites. J. Am. Chem. Soc. 128, 14432–14433 (2006).
Castro, M. E., Russell, D. H., Amster, I. J. & McLafferty, F. W. Detection of mass 16241 ions by Fourier-transform mass spectrometry. Anal. Chem. 58, 483–485 (1986).
Karabacak, N. M. et al. Sensitive and specific identification of wild type and variant proteins from 8 to 669 kDa using top-down mass spectrometry. Mol. Cell Proteomics 8, 846–856 (2009).
Zhang, H., Cui, W., Gross, M. L. & Blankenship, R. E. Native mass spectrometry of photosynthetic pigment–protein complexes. FEBS Lett. 587, 1012–1020 (2013).
Li, H., Wolff, J. J., Van Orden, S. L. & Loo, J. A. Native top-down electrospray ionization-mass spectrometry of 158 kDa protein complex by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 86, 317–320 (2014).
Li, H., Wongkongkathep, P., Van Orden, S., Ogorzalek Loo, R. & Loo, J. Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment. J. Am. Soc. Mass Spectrom. 25, 2060–2068 (2014).
Zhang, H., Cui, W., Wen, J., Blankenship, R. E. & Gross, M. L. Native electrospray and electron-capture dissociation FTICR mass spectrometry for top-down studies of protein assemblies. Anal. Chem. 83, 5598–5606 (2011).
Geels, R. B. J., van der Vies, S. M., Heck, A. J. R. & Heeren, R. M. A. Electron capture dissociation as structural probe for noncovalent gas-phase protein assemblies. Anal. Chem. 78, 7191–7196 (2006).
Barford, D., Hu, S. H. & Johnson, L. N. Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J. Mol. Biol. 218, 233–260 (1991).
Horn, D. M., Ge, Y. & McLafferty, F. W. Activated ion electron capture dissociation for mass spectral sequencing of larger (42 kDa) proteins. Anal. Chem. 72, 4778–4784 (2000).
Schennach, M. & Breuker, K. Probing protein structure and folding in the gas phase by electron capture dissociation. J. Am. Soc. Mass Spectrom. 26, 1059–1067 (2015).
Johnson, L. N. Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB J. 6, 2274–2282 (1992).
Tsaprailis, G., Somogyi, Á., Nikolaev, E. N. & Wysocki, V. H. Refining the model for selective cleavage at acidic residues in arginine-containing protonated peptides2. Int. J. Mass Spectrom. 195–196, 467–479 (2000).
Breci, L. A., Tabb, D. L., Yates, J. R. & Wysocki, V. H. Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. Anal. Chem. 75, 1963–1971 (2003).
Rose, G., Geselowitz, A., Lesser, G., Lee, R. & Zehfus, M. Hydrophobicity of amino acid residues in globular proteins. Science 229, 834–838 (1985).
Carrigan, J. B. & Engel, P. C. The structural basis of proteolytic activation of bovine glutamate dehydrogenase. Protein Sci. 17, 1346–1353 (2008).
Banerjee, S., Schmidt, T., Fang, J., Stanley, C. A. & Smith, T. J. Structural studies on ADP activation of mammalian glutamate dehydrogenase and the evolution of regulation. Biochemistry 42, 3446–3456 (2003).
Smith, T. J. & Stanley, C. A. Untangling the glutamate dehydrogenase allosteric nightmare. Trends Biochem. Sci. 33, 557–564 (2008).
Jacobson, R. H., Zhang, X. J., DuBose, R. F. & Matthews, B. W. Three-dimensional structure of β-galactosidase from E. coli. Nature 369, 761–766 (1994).
Matthews, B. W. The structure of E. coli β-galactosidase. C. R. Biol. 328, 549–556 (2005).
Cui, W., Zhang, H., Blankenship, R. E. & Gross, M. L. Electron-capture dissociation and ion mobility mass spectrometry for characterization of the hemoglobin protein assembly. Protein Sci. 24, 1325–1332 (2015).
Lermyte, F. et al. ETD allows for native surface mapping of a 150 kDa noncovalent complex on a commercial Q-TWIMS-TOF instrument. J. Am. Soc. Mass Spectrom. 25, 343–350 (2014).
Li, H. et al. Structural characterization of native proteins and protein complexes by electron ionization dissociation-mass spectrometry. Anal. Chem. 89, 2731–2738 (2017).
Jacob, E. & Unger, R. A tale of two tails: why are terminal residues of proteins exposed? Bioinformatics 23, e225–e230 (2007).
van der Spoel, D., Marklund, E. G., Larsson, D. S. D. & Caleman, C. Proteins, lipids, and water in the gas phase. Macromol. Biosci. 11, 50–59 (2011).
Faull, P. A. et al. Gas-phase metalloprotein complexes interrogated by ion mobility-mass spectrometry. Int. J. Mass Spectrom. 283, 140–148 (2009).
Haverland, N. A. et al. Defining gas-phase fragmentation propensities of intact proteins during native top-down mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1203–1215 (2017).
Brodbelt, J. S. & Wilson, J. J. Infrared multiphoton dissociation in quadrupole ion traps. Mass Spectrom. Rev. 28, 390–424 (2009).
Bourgoin-Voillard, S., Leymarie, N. & Costello, C. E. Top-down tandem mass spectrometry on RNase A and B using a Qh/FT-ICR hybrid mass spectrometer. Proteomics 14, 1174–1184 (2014).
Ahlf, D. et al. Evaluation of the compact high-field Orbitrap for top-down proteomics of human cells. J. Proteome Res. 11, 4308–4314 (2012).
Holzmann, J., Hausberger, A., Rupprechter, A. & Toll, H. Top-down MS for rapid methionine oxidation site assignment in filgrastim. Anal. Bioanal. Chem. 405, 6667–6674 (2013).
Belov, M. E. et al. From protein complexes to subunit backbone fragments: a multi-stage approach to native mass spectrometry. Anal. Chem. 85, 11163–11173 (2013).
Brodbelt, J. S. Ion activation methods for peptides and proteins. Anal. Chem. 88, 30–51 (2016).
Durbin, K. R., Skinner, O. S., Fellers, R. T. & Kelleher, N. L. Analyzing internal fragmentation of electrosprayed ubiquitin ions during beam-type collisional dissociation. J. Am. Soc. Mass Spectrom. 26, 782–787 (2015).
Ogorzalek Loo, R. R. & Loo, J. A. Protein complexes: breaking up is hard to do well. Structure 21, 1265–1266 (2013).
Schennach, M. & Breuker, K. Proteins with highly similar native folds can show vastly dissimilar folding behavior when desolvated. Angew. Chem. Int. Ed. 53, 164–168 (2014).
Campuzano, I. & Giles, K. Nanoproteomics: Methods and Protocols (eds Toms, S.A. & Weil, R.J.) 57–70 (Humana, 2011).
Marshall, A. G., Hendrickson, C. L. & Jackson, G. S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998).
Rayleigh, L. XX. On the equilibrium of liquid conducting masses charged with electricity. Philos. Mag. 14, 184–186 (1882).
Ma, X., Zhou, M. & Wysocki, V. Surface induced dissociation yields quaternary substructure of refractory noncovalent phosphorylase B and glutamate dehydrogenase complexes. J. Am. Soc. Mass Spectrom. 25, 368–379 (2014).
Rostom, A. A. & Robinson, C. V. Detection of the intact GroEL chaperonin assembly by mass spectrometry. J. Am. Chem. Soc. 121, 4718–4719 (1999).
Sobott, F. & Robinson, C. V. Characterising electrosprayed biomolecules using tandem-MS—the noncovalent GroEL chaperonin assembly. Int. J. Mass Spectrom. 236, 25–32 (2004).
Zubarev, R. A. Electron-capture dissociation tandem mass spectrometry. Curr. Opin. Biotechnol. 15, 12–16 (2004).
Acknowledgements
The authors thank C. Wan and R. Malmirchegini for discussions and M. Penichet for the hTfR sample. The authors acknowledge support from the US National Institutes of Health (R01 GM103479 and S10 RR028893 to J.A.L.), the US Department of Energy (UCLA/DOE Institute for Genomics and Proteomics; DE-FC03-02ER63421) and the American Society for Mass Spectrometry Postdoctoral Research Award (to H.L.).
Author information
Authors and Affiliations
Contributions
H.L. and J.A.L. conceived and designed the experiments. H.L. performed experiments and analysed data. H.H.N. contributed to analysis tools. I.D.G.C. prepared and contributed the GroEL sample. H.L., R.R.O.L. and J.A.L co-wrote the paper. All authors discussed the results and commented on the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 2761 kb)
Rights and permissions
About this article
Cite this article
Li, H., Nguyen, H., Ogorzalek Loo, R. et al. An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nature Chem 10, 139–148 (2018). https://doi.org/10.1038/nchem.2908
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchem.2908
This article is cited by
-
Advances in mass spectrometry-based approaches for characterizing monoclonal antibodies: resolving structural complexity and analytical challenges
Journal of Analytical Science and Technology (2024)
-
Top-down proteomics
Nature Reviews Methods Primers (2024)
-
Biofunctionalized dissolvable hydrogel microbeads enable efficient characterization of native protein complexes
Nature Communications (2024)
-
Direct determination of oligomeric organization of integral membrane proteins and lipids from intact customizable bilayer
Nature Methods (2023)
-
Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics
Nature Communications (2023)