Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots

Abstract

The generation and transfer of triplet excitons across semiconductor nanomaterial–molecular interfaces will play an important role in emerging photonic and optoelectronic technologies, and understanding the rules that govern such phenomena is essential. The ability to cooperatively merge the photophysical properties of semiconductor quantum dots with those of well-understood and inexpensive molecular chromophores is therefore paramount. Here we show that 1-pyrenecarboxylic acid-functionalized CdSe quantum dots undergo thermally activated delayed photoluminescence. This phenomenon results from a near quantitative triplet–triplet energy transfer from the nanocrystals to 1-pyrenecarboxylic acid, producing a molecular triplet-state ‘reservoir’ that thermally repopulates the photoluminescent state of CdSe through endothermic reverse triplet–triplet energy transfer. The photoluminescence properties are systematically and predictably tuned through variation of the quantum dot–molecule energy gap, temperature and the triplet-excited-state lifetime of the molecular adsorbate. The concepts developed are likely to be applicable to semiconductor nanocrystals interfaced with molecular chromophores, enabling potential applications of their combined excited states.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Strategy for generating deterministic TADPL processes at CdSe–PCA interfaces.
Figure 2: Static UV–vis and PL data of the CdSe-OA, CdSe–PCA and PCA chromophores and scaling of PCA adsorption with increasing quantum dot surface area.
Figure 3: Kinetic evidence of the correlation between PCA-based transient absorption triplet decays and TADPL intensity decays in CdSe–PCA materials as a function of quantum dot size.
Figure 4: TADPL intensity decay behaviour measured as a function of temperature in CdSe–PCA materials of varied quantum dot size.
Figure 5: Arrhenius plots derived from temperature-dependent TADPL intensity decays measured in CdSe–PCA materials of varied quantum dot size.

References

  1. 1

    Choi, J.-H. et al. Exploiting the colloidal nanocrystal library to construct electronic devices. Science 352, 205–208 (2016).

    CAS  Article  Google Scholar 

  2. 2

    Tabachnyk, M. et al. Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nat. Mater. 13, 1033–1038 (2014).

    CAS  Article  Google Scholar 

  3. 3

    Thompson, N. J. et al. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nat. Mater. 13, 1039–1043 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Huang, Z. et al. Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15, 5552–5557 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Mongin, C., Garakyaraghi, S., Razgoniaeva, N., Zamkov, M. & Castellano, F. N. Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351, 369–372 (2016).

    CAS  Article  Google Scholar 

  6. 6

    Wu, M. et al. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photon. 10, 31–34 (2016).

    CAS  Article  Google Scholar 

  7. 7

    Huang, Z. & Tang, M. L. Designing transmitter ligands that mediate energy transfer between semiconductor nanocrystals and molecules. J. Am. Chem. Soc. 139, 9412–9418 (2017).

    CAS  Article  Google Scholar 

  8. 8

    Scholes, G. D. Controlling the optical properties of inorganic nanoparticles. Adv. Funct. Mater. 18, 1157–1172 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Crooker, S. A., Barrick, T., Hollingsworth, J. A. & Klimov, V. I. Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: intrinsic limits to the dark-exciton lifetime. Appl. Phys. Lett. 82, 2793 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin Complexes (Academic, 1992).

    Google Scholar 

  11. 11

    Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    CAS  Article  Google Scholar 

  12. 12

    Efros, A. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54, 4843–4856 (1996).

    CAS  Article  Google Scholar 

  13. 13

    Li, X., Huang, Z., Zavala, R. & Tang, M. L. Distance-dependent triplet energy transfer between CdSe nanocrystals and surface bound anthracene. J. Phys. Chem. Lett. 7, 1955–1959 (2016).

    CAS  Article  Google Scholar 

  14. 14

    Ford, W. E. & Rodgers, M. A. J. Reversible triplet–triplet energy transfer within a covalently linked bichromophoric molecule. J. Phys. Chem. 96, 2917–2920 (1992).

    CAS  Article  Google Scholar 

  15. 15

    Tyson, D. S. & Castellano, F. N. Intramolecular singlet and triplet energy transfer in a ruthenium(II) diimine complex containing multiple pyrenyl chromophores. J. Phys. Chem. A 103, 10955–10960 (1999).

    CAS  Article  Google Scholar 

  16. 16

    McClenaghan, N. D., Barigelletti, F., Maubert, B. & Campagna, S. Towards ruthenium(II) polypyridine complexes with prolonged and predetermined excited state lifetimes. Chem. Commun. 602–603 (2002).

  17. 17

    Castellano, F. N. Altering molecular photophysics by merging organic and inorganic chromophores. Acc. Chem. Res. 48, 828–839 (2015).

    CAS  Article  Google Scholar 

  18. 18

    Parker, C. A. & Hatchard, C. G. Triplet-singlet emission in fluid solutions. Phosphorescence of eosin. Trans. Faraday Soc. 51, 1894–1904 (1961).

    CAS  Article  Google Scholar 

  19. 19

    Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Soloviev, V. N., Eichhöfer, A., Fenske, D. & Banin, U. Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules. J. Am. Chem. Soc. 123, 2354–2364 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Robel, I., Kuno, M. & Kamat, P. V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 4136–4137 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Williams, G. & Watts, D. C. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970).

    CAS  Article  Google Scholar 

  23. 23

    Niko, Y., Hiroshige, Y., Kawauchi, S. & Konishi, G.-I. Fundamental photoluminescence properties of pyrene carbonyl compounds through absolute fluorescence quantum yield measurement and density functional theory. Tetrahedron 68, 6177–6185 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Langelaar, J., Rettschnick, R. H. P. & Hoijtink, G. J. Studies on triplet radiative lifetimes, phosphorescence, and delayed fluorescence yields of aromatic hydrocarbons in liquid solutions. J. Chem. Phys. 54, 1–7 (1971).

    CAS  Article  Google Scholar 

  25. 25

    Yarnell, J. E., Deaton, J. C., McCusker, C. E. & Castellano, F. N. Bidirectional ‘ping-pong’ energy transfer and 3000-fold lifetime enhancement in a Re(I) charge transfer complex. Inorg. Chem. 50, 7820–7830 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Yarnell, J. E., McCusker, C. E., Leeds, A. J., Breaux, J. M. & Castellano, F. N. Exposing the excited-state equilibrium in an IrIII bichromophore: a combined time resolved spectroscopy and computational study. Eur. J. Inorg. Chem. 2016, 1808–1818 (2016).

    CAS  Article  Google Scholar 

  27. 27

    Valerini, D. et al. Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix. Phys. Rev. B 71, 235409 (2005).

    Article  Google Scholar 

  28. 28

    Baleizão, C. & Berberan-Santos, M. N. Thermally activated delayed fluorescence as a cycling process between excited singlet and triplet states: application to the fullerenes. J. Chem. Phys. 126, 204510 (2007).

    Article  Google Scholar 

  29. 29

    Zhang, L. et al. Temperature and wavelength dependence of energy transfer process between quantized states and surface states in CdSe quantum dots. Nanoscale Res. Lett. 12, 222 (2017).

    Article  Google Scholar 

  30. 30

    Murov, S. L., Carmichael, I. & Hug, G. L. Handbook of Photochemistry 2nd edn (Marcel Dekker, 1993).

    Google Scholar 

  31. 31

    Dabbousi, B. O. et al. (Cdse)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997).

    CAS  Article  Google Scholar 

  32. 32

    Mahboub, M., Huang, Z. & Tang, M. L. Efficient infrared-to-visible upconversion with subsolar irradiance. Nano Lett. 16, 7169–7175 (2016).

    CAS  Article  Google Scholar 

  33. 33

    Carbone, L. et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942–2950 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research (FA9550-13-1-0106) and the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under award no. DE-SC0011979. P.M. and M.Z. were supported by award no. DE-SC0016872, funded by the US Department of Energy, Office of Science.

Author information

Affiliations

Authors

Contributions

C.M. contributed to the preparation and characterization of the PCA-containing CdSe materials, all of the photophysical experiments, data analysis and manuscript composition. P.M. contributed to the preparation and characterization of the native CdSe-OA materials. M.Z. contributed to the preparation and characterization of the native CdSe-OA materials and manuscript composition. F.N.C. contributed to the original research concept, data analysis, manuscript composition and overall supervision of the project.

Corresponding author

Correspondence to Felix N. Castellano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6228 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mongin, C., Moroz, P., Zamkov, M. et al. Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots. Nature Chem 10, 225–230 (2018). https://doi.org/10.1038/nchem.2906

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing