Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Palladium-catalysed anti-Markovnikov selective oxidative amination

Abstract

In recent years, the synthesis of amines and other nitrogen-containing motifs has been a major area of research in organic chemistry because they are widely represented in biologically active molecules. Current strategies rely on a multistep approach and require one reactant to be activated prior to the carbon–nitrogen bond formation. This leads to a reaction inefficiency and functional group intolerance. As such, a general approach to the synthesis of nitrogen-containing compounds from readily available and benign starting materials is highly desirable. Here we present a palladium-catalysed oxidative amination reaction in which the addition of the nitrogen occurs at the less-substituted carbon of a double bond, in what is known as anti-Markovnikov selectivity. Alkenes are shown to react with imides in the presence of a palladate catalyst to generate the terminal imide through trans-aminopalladation. Subsequently, olefin isomerization occurs to afford the thermodynamically favoured products. Both the scope of the transformation and mechanistic investigations are reported.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current strategies for the anti-Markovnikov oxidative amination of simple alkenes.
Figure 2: Mechanistic investigation of the anti-Markovnikov oxidative amination through reagent order determination and Hammett plot analysis.
Figure 3: Deuterium labelling studies as probes to distinguish between multiple mechanistic pathways.
Figure 4: A catalytic cycle proposal based on the mechanistic studies undertaken.

Similar content being viewed by others

References

  1. Muller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F. & Tada, M. Hydroamination: direct addition of amines to alkenes and alkynes. Chem. Rev. 108, 3795–3892 (2008).

    PubMed  Google Scholar 

  2. Nishina, N. & Yamamoto, Y. Late transition metal-catalyzed hydroamination. Top. Organomet. Chem. 43, 115–144 (2012).

    Google Scholar 

  3. Timokhin, V. I., Anastasi, N. R. & Stahl, S. S. Dioxygen-coupled oxidative amination of styrene. J. Am. Chem. Soc. 125, 12996–12997 (2003).

    CAS  PubMed  Google Scholar 

  4. Brice, J. L., Harang, J. E., Timokhin, V. I., Anastasi, N. R. & Stahl, S. S. Aerobic oxidative amination of unactivated alkenes catalyzed by palladium. J. Am. Chem. Soc. 127, 2868–2869 (2005).

    CAS  PubMed  Google Scholar 

  5. Rogers, M. M., Kotov, V., Chatwichien, J. & Stahl, S. S. Palladium-catalyzed oxidative amination of alkenes: improved catalyst reoxidation enables the use of alkene as the limiting reagent. Org. Lett. 9, 4331–4334 (2007).

    CAS  PubMed  Google Scholar 

  6. McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kočovský, P. & Bäckvall, J. E. The syn/anti-dichotomy in the palladium-catalyzed addition of nucleophiles to alkenes. Chem. Eur. J. 21, 36–56 (2014).

    PubMed  Google Scholar 

  8. Smith, B. R., Eastman, C. M. & Njardarson, J. T. Beyond C, H, O, and N! Analysis of the elemental composition of U.S. FDA approved drug architectures. J. Med. Chem. 57, 9764–9773 (2014).

    CAS  PubMed  Google Scholar 

  9. Baker, R. & Halliday, D. E. Ligand effects in the rhodium catalysed reaction of butadiene and amines. Tetrahedron Lett. 13, 2773–2776 (1972).

    Google Scholar 

  10. Hosokawa, T., Takano, M., Kuroki, Y. & Murahashi, S.-I. Palladium(II)-catalyzed amidation of alkenes. Tetrahedron Lett. 33, 6643–6646 (1992).

    CAS  Google Scholar 

  11. Beller, M., Trauthwein, H., Eichberger, M., Breindl, C. & Müller, T. E. Anti-Markovnikov reactions. Part 6. Rhodium-catalyzed amination of vinylpyridines. Hydroamination versus oxidative amination. Eur. J. Inorg. Chem. 1121–1132 (1999).

  12. Utsunomiya, M., Kuwano, R., Kawatsura, M. & Hartwig, J. F. Rhodium-catalyzed anti-Markovnikov hydroamination of vinylarenes. J. Am. Chem. Soc. 125, 5608–5609 (2003).

    CAS  PubMed  Google Scholar 

  13. Timokhin, V. I. & Stahl, S. S. Brønsted base-modulated regioselectivity in the aerobic oxidative amination of styrene catalyzed by palladium. J. Am. Chem. Soc. 127, 17888–17893 (2005).

    CAS  PubMed  Google Scholar 

  14. Lee, J. M. et al. Hydrogen-bond-directed highly stereoselective synthesis of Z-enamides via Pd-catalyzed oxidative amidation of conjugated olefins. J. Am. Chem. Soc. 128, 12954–12962 (2006).

    CAS  PubMed  Google Scholar 

  15. Goldfogel, M. J., Roberts, C. C. & Meek, S. J. Intermolecular hydroamination of 1,3-dienes catalyzed by bis(phosphine)carbodicarbene–rhodium complexes. J. Am. Chem. Soc. 136, 6227–6230 (2014).

    CAS  PubMed  Google Scholar 

  16. Dong, J. J., Browne, W. R. & Feringa, B. L. Palladium-catalyzed anti-Markovnikov oxidation of terminal alkenes. Angew. Chem. Int. Ed. 54, 734–744 (2014).

    Google Scholar 

  17. Reed, S. A. & White, M. C. Catalytic intermolecular linear allylic C−H amination via heterobimetallic catalysis. J. Am. Chem. Soc. 130, 3316–3318 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, G., Yin, G. & Wu, L. Palladium-catalyzed intermolecular aerobic oxidative amination of terminal alkenes: efficient synthesis of linear allylamine derivatives. Angew. Chem. Int. Ed. 47, 4733–4736 (2008).

    CAS  Google Scholar 

  19. Yin, G., Wu, Y. & Liu, G. Scope and mechanism of allylic C−H amination of terminal alkenes by the palladium/PhI(OPiv)2 catalyst system: insights into the effect of naphthoquinone. J. Am. Chem. Soc. 132, 11978–11987 (2010).

    CAS  PubMed  Google Scholar 

  20. Pattillo, C. C. et al. Aerobic linear allylic C–H amination: overcoming benzoquinone inhibition. J. Am. Chem. Soc. 138, 1265–1272 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoveyda, A. H., Evans, D. A. & Fu, G. C. Substrate-directable chemical reactions. Chem. Rev. 93, 1307–1370 (1993).

    CAS  Google Scholar 

  22. Delcamp, J. H., Brucks, A. P. & White, M. C. A general and highly selective chelate-controlled intermolecular oxidative Heck reaction. J. Am. Chem. Soc. 130, 11270–11271 (2008).

    CAS  PubMed  Google Scholar 

  23. Grünanger, C. U. & Breit, B. Branched-regioselective hydroformylation with catalytic amounts of a reversibly bound directing group. Angew. Chem. Int. Ed. 47, 7346–7349 (2008).

    Google Scholar 

  24. Weiner, B., Baeza, A., Jerphagnon, T. & Feringa, B. L. Aldehyde selective Wacker oxidations of phthalimide protected allylic amines: a new catalytic route to β3-amino acids. J. Am. Chem. Soc. 131, 9473–9474 (2009).

    CAS  PubMed  Google Scholar 

  25. Choi, P. J., Sperry, J. & Brimble, M. A. Heteroatom-directed reverse Wacker oxidations. Synthesis of the reported structure of (−)-herbaric acid. J. Org. Chem. 75, 7388–7392 (2010).

    CAS  PubMed  Google Scholar 

  26. Ensign, S. C., Vanable, E. P., Kortman, G. D., Weir, L. J. & Hull, K. L. Anti-Markovnikov hydroamination of homoallylic amines. J. Am. Chem. Soc. 137, 13748–13751 (2015).

    CAS  PubMed  Google Scholar 

  27. Gurak, J. A. Jr, Yang, K. S., Liu, Z. & Engle, K. M. Directed, regiocontrolled hydroamination of unactivated alkenes via protodepalladation. J. Am. Chem. Soc. 138, 5805–5808 (2016).

    CAS  PubMed  Google Scholar 

  28. Äkermark, B. et al. Palladium-promoted addition of amines to isolated double bonds. J. Organomet. Chem. 72, 127–138 (1974).

    Google Scholar 

  29. Pryadun, R., Sukumaran, D., Bogadi, R. & Atwood, J. D. Amine attack on coordinated alkenes: an interconversion from anti-Markovnikoff to Markovnikoff products. J. Am. Chem. Soc. 126, 12414–12420 (2004).

    CAS  PubMed  Google Scholar 

  30. Keith, J. A. & Henry, P. M. The mechanism of the Wacker reaction: a tale of two hydroxypalladations. Angew. Chem. Int. Ed. 48, 9038–9049 (2009).

    CAS  Google Scholar 

  31. Wenzel, T. T. Oxidation of olefins to aldehydes using a palladium–copper catalyst. J. Chem. Soc. Chem. Commun. 862–864 (1993).

    CAS  Google Scholar 

  32. Ogura, T., Kamimura, R., Shiga, A. & Hosokawa, T. Reversal of regioselectivity in Wacker-type oxidation of simple terminal alkenes and its paired interacting orbitals (PIO) analysis. Bull. Chem. Soc. Jpn 78, 1555–1557 (2005).

    CAS  Google Scholar 

  33. Dong, G., Teo, P., Wickens, Z. K. & Grubbs, R. H. Primary alcohols from terminal olefins: formal anti-Markovnikov hydration via triple relay catalysis. Science 333, 1609–1612 (2011).

    CAS  PubMed  Google Scholar 

  34. Liu, G. & Stahl, S. S. Highly regioselective Pd-catalyzed intermolecular aminoacetoxylation of alkenes and evidence for cis-aminopalladation and SN2 C−O bond formation. J. Am. Chem. Soc. 128, 7179–7181 (2006).

    CAS  PubMed  Google Scholar 

  35. Martínez, C. et al. Palladium-catalyzed intermolecular aminoacetoxylation of alkenes and the influence of PhI(OAc)2 on aminopalladation stereoselectivity. J. Org. Chem. 78, 6309–6315 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. Mann, S., Benhamou, L. & Sheppard, T. Palladium(II)-catalysed oxidation of alkenes. Synthesis 47, 3079–3117 (2015).

    CAS  Google Scholar 

  37. Yin, G., Mu, X. & Liu, G. Palladium(II)-catalyzed oxidative difunctionalization of alkenes: bond forming at a high-valent palladium center. Acc. Chem. Res. 49, 2413–2423 (2016).

    CAS  PubMed  Google Scholar 

  38. Jeffery, T. Palladium-catalysed vinylation of organic halides under solid–liquid phase transfer conditions. J. Chem. Soc. Chem. Commun. 1287–1289 (1984).

  39. Cheng, J., Qi, X., Li, M., Chen, P. & Liu, G. Palladium-catalyzed intermolecular aminocarbonylation of alkenes: efficient access of β-amino acid derivatives. J. Am. Chem. Soc. 137, 2480–2483 (2015).

    CAS  PubMed  Google Scholar 

  40. Larock, R. C., Leung, W.-Y. & Stolz-Dunn, S. Synthesis of aryl-substituted aldehydes and ketones via palladium-catalyzed coupling of aryl halides and non-allylic unsaturated alcohols. Tetrahedron Lett. 30, 6629–6632 (1989).

    CAS  Google Scholar 

  41. Bouquillon, S., Ganchegui, B., Estrine, B., Hénin, F. & Muzart, J. Heck arylation of allylic alcohols in molten salts. J. Organomet. Chem. 634, 153–156 (2001).

    CAS  Google Scholar 

  42. Werner, E. W., Mei, T.-S., Burckle, A. J. & Sigman, M. S. Enantioselective heck arylations of acyclic alkenyl alcohols using a redox-relay strategy. Science 338, 1455–1458 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nokami, J. et al. A new synthetic method for γ-butyrolactols by the palladium-catalyzed regioselective oxidation of 1-alken-4-ols. Tetrahedron Lett. 29, 5181–5184 (1988).

    CAS  Google Scholar 

  44. Yatagai, H., Yamamoto, Y. & Maruyama, K. A new procedure for the stereoselective synthesis of (Z)-2-alkenylsilanes and -tins and their application to erythro-selective synthesis of β-alkyl alcohol derivatives. J. Am. Chem. Soc. 102, 4548–4550 (1980).

    CAS  Google Scholar 

  45. Olsen, D. K., Torian, B. E., Morgan, C. D. & Braun, L. L. Preparation and stereochemistry of 4-aryl-3-butenylamines. A novel synthesis of an oxazolo[2,3-a]isoindole. J. Org. Chem. 45, 4049–4052 (1980).

    CAS  Google Scholar 

  46. Winstein, S., McCaskie, J., Lee, H.-B. & Henry, P. M. Oxidation of olefins by palladium(II). 9. Mechanism of the oxidation of olefins by the dimeric species, disodium dipalladium hexaacetate, in acetic acid. J. Am. Chem. Soc. 98, 6913–6918 (1976).

    CAS  Google Scholar 

  47. Carrow, B. P. & Hartwig, J. F. Ligandless, anionic, arylpalladium halide intermediates in the Heck reaction. J. Am. Chem. Soc. 132, 79–81 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. De Vries, A. H. M. et al. A practical recycle of a ligand-free palladium catalyst for Heck reactions. Adv. Synth. Catal. 344, 996–1002 (2002).

    CAS  Google Scholar 

  49. Reetz, M. T. & Westermann, E. Phosphane-free palladium-catalyzed coupling reactions: the decisive role of Pd nanoparticles. Angew. Chem. Int. Ed. 39, 165–168 (2000).

    CAS  Google Scholar 

  50. Hanley, P. S. & Hartwig, J. F. Intermolecular migratory insertion of unactivated olefins into palladium–nitrogen bonds. Steric and electronic effects on the rate of migratory insertion. J. Am. Chem. Soc. 133, 15661–15673 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the University of Illinois and the National Institutes for Health (R35-GM125029) for their generous support.

Author information

Authors and Affiliations

Authors

Contributions

D.G.K. and K.L.H. conceived and designed the experiments and wrote the manuscript. D.G.K. and P.J.W. discovered the reaction. D.G.K., J.L.K. and S.N.G. performed the experiments.

Corresponding author

Correspondence to Kami L. Hull.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5855 kb)

Supplementary information

Crystallographic data for the bis(tetrabutylammonium) tetrachloropalladate. (CIF 810 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohler, D., Gockel, S., Kennemur, J. et al. Palladium-catalysed anti-Markovnikov selective oxidative amination. Nature Chem 10, 333–340 (2018). https://doi.org/10.1038/nchem.2904

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2904

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing