A general approach to intermolecular carbonylation of arene C–H bonds to ketones through catalytic aroyl triflate formation


The development of metal-catalysed methods to functionalize inert C–H bonds has become a dominant research theme in the past decade as an approach to efficient synthesis. However, the incorporation of carbon monoxide into such reactions to form valuable ketones has to date proved a challenge, despite its potential as a straightforward and green alternative to Friedel–Crafts reactions. Here we describe a new approach to palladium-catalysed C–H bond functionalization in which carbon monoxide is used to drive the generation of high-energy electrophiles. This offers a method to couple the useful features of metal-catalysed C–H functionalization (stable and available reagents) and electrophilic acylations (broad scope and selectivity), and synthesize ketones simply from aryl iodides, CO and arenes. Notably, the reaction proceeds in an intermolecular fashion, without directing groups and at very low palladium-catalyst loadings. Mechanistic studies show that the reaction proceeds through the catalytic build-up of potent aroyl triflate electrophiles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Comparison of the classical approaches to ketone synthesis with the palladium-catalysed carbonylative C–H bond functionalization reaction described here.
Figure 2: Palladium-catalyst development for the intermolecular carbonylative coupling of aryl iodide and benzene into ketones.
Figure 3: Mechanistic studies demonstrate this transformation proceeds through the novel catalytic formation of aroyl triflate electrophiles.
Figure 4: Applications of this general methodology to the synthesis of pharmaceutically relevant molecules, double C–H bond functionalization and low-temperature C–H bond functionalization.


  1. 1

    Olah, G. A. Friedel–Crafts and Related Reactions (Interscience, 1963).

    Google Scholar 

  2. 2

    Sartori, G. & Maggi, R. Advances in Friedel–Crafts Acylation Reactions: Catalytic and Green Processes (CRC, 2010).

    Google Scholar 

  3. 3

    Boursalian, G. B., Ham, W. S., Mazzotti, A. R. & Ritter, T. Charge-transfer-directed radical substitution enables para-selective C–H functionalization. Nat. Chem. 8, 810–815 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Bähr, S. & Oestreich, M. Electrophilic aromatic substitution with silicon electrophiles: catalytic Friedel–Crafts C−H silylation. Angew. Chem. Int. Ed. 56, 52–59 (2017).

    Google Scholar 

  5. 5

    Vekariya, R. H. & Aubé, J. Hexafluoro-2-propanol-promoted intermolecular Friedel–Crafts acylation reaction. Org. Lett. 18, 3534–3537 (2016).

    CAS  PubMed  Google Scholar 

  6. 6

    Liu, Y., Meng, G., Liu, R. & Szostak, M. Sterically-controlled intermolecular Friedel–Crafts acylation with twisted amides via selective N–C cleavage under mild conditions. Chem. Commun. 52, 6841–6844 (2016).

    CAS  Google Scholar 

  7. 7

    Hartwig, J. F. Evolution of C–H bond functionalization from methane to methodology. J. Am. Chem. Soc. 138, 2–24 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. 8

    Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C−H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C−C bond formation via heteroatom-directed C−H bond activation. Chem. Rev. 110, 624–655 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Chen, X., Engle, K. M., Wang, D.-H. & Yu, J.-Q. Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. 48, 5094–5115 (2009).

    CAS  Google Scholar 

  11. 11

    Liu, C. et al. Oxidative coupling between two hydrocarbons: an update of recent C–H functionalizations. Chem. Rev. 115, 12138–12204 (2015).

    CAS  PubMed  Google Scholar 

  12. 12

    Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist's toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    CAS  PubMed  Google Scholar 

  13. 13

    Kuhl, N., Hopkinson, M. N., Wencel-Delord, J. & Glorius, F. Beyond directing groups: transition-metal-catalyzed C–H activation of simple arenes. Angew. Chem. Int. Ed. 51, 10236–10254 (2012).

    CAS  Google Scholar 

  14. 14

    Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Jia, C., Kitamura, T. & Fujiwara, Y. Catalytic functionalization of arenes and alkanes via C−H bond activation. Acc. Chem. Res. 34, 633–639 (2001).

    CAS  Google Scholar 

  16. 16

    Liu, Q., Zhang, H. & Lei, A. Oxidative carbonylation reactions: organometallic compounds (R–M) or hydrocarbons (R–H) as nucleophiles. Angew. Chem. Int. Ed. 50, 10788–10799 (2011).

    CAS  Google Scholar 

  17. 17

    Bai, Y., Davis, D. C. & Dai, M. Natural product synthesis via palladium-catalyzed carbonylation. J. Org. Chem. 82, 2319–2328 (2017).

    CAS  PubMed  Google Scholar 

  18. 18

    Yang, L. & Huang, H. Transition-metal-catalyzed direct addition of unactivated C–H bonds to polar unsaturated bonds. Chem. Rev. 115, 3468–3517 (2015).

    CAS  PubMed  Google Scholar 

  19. 19

    Willcox, D. et al. A general catalytic β-C–H carbonylation of aliphatic amines to β-lactams. Science 354, 851–857 (2016).

    CAS  PubMed  Google Scholar 

  20. 20

    Li, S., Chen, G., Feng, C.-G., Gong, W. & Yu, J.-Q. Ligand-enabled γ-C–H olefination and carbonylation: construction of β-quaternary carbon centers. J. Am. Chem. Soc. 136, 5267–5270 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Campo, M. A. & Larock, R. C. Synthesis of fluoren-9-ones by the palladium-catalyzed cyclocarbonylation of o-halobiaryls. J. Org. Chem. 67, 5616–5620 (2002).

    CAS  PubMed  Google Scholar 

  22. 22

    Wu, X.-F., Anbarasan, P., Neumann, H. & Beller, M. Palladium-catalyzed carbonylative C–H activation of heteroarenes. Angew. Chem. Int. Ed. 49, 7316–7319 (2010).

    CAS  Google Scholar 

  23. 23

    Lian, Z., Friis, S. D. & Skrydstrup, T. C–H activation dependent Pd-catalyzed carbonylative coupling of (hetero)aryl bromides and polyfluoroarenes. Chem. Commun. 51, 1870–1873 (2015).

    CAS  Google Scholar 

  24. 24

    Zhang, H. et al. Palladium-catalyzed oxidative double C–H functionalization/carbonylation for the synthesis of xanthones. Angew. Chem. Int. Ed. 51, 5204–5207 (2012).

    CAS  Google Scholar 

  25. 25

    Cernak, T. A. & Lambert, T. H. Multicatalytic synthesis of α-pyrrolidinyl ketones via a tandem palladium(II)/indium(III)-catalyzed aminochlorocarbonylation/Friedel−Crafts acylation reaction. J. Am. Chem. Soc. 131, 3124–3125 (2009).

    CAS  PubMed  Google Scholar 

  26. 26

    Zeng, F. & Alper, H. Pd-catalyzed direct coupling of indoles with carbon monoxide and alkynes: selective synthesis of linear α,β-unsaturated ketones. Org. Lett. 15, 2034–2037 (2013).

    CAS  PubMed  Google Scholar 

  27. 27

    Wu, X.-F., Neumann, H. & Beller, M. Palladium-catalyzed carbonylative coupling reactions between Ar–X and carbon nucleophiles. Chem. Soc. Rev. 40, 4986–5009 (2011).

    CAS  PubMed  Google Scholar 

  28. 28

    Blangetti, M., Rosso, H., Prandi, C., Deagostino, A. & Venturello, P. Suzuki–Miyaura cross-coupling in acylation reactions, scope and recent developments. Molecules 18, 1188–1213 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Kuniyasu, H. et al. σ-Bond metathesis between M–X and RC(O)X′ (M = Pt, Pd; X, X′ = Cl, Br, I): facile determination of the relative ΔG values of the oxidative additions of RC(O)X to an M(0) complex, evidence by density functional theory calculations, and synthetic applications. Organometallics 32, 2026–2032 (2013).

    CAS  Google Scholar 

  30. 30

    Beller, M. & Wu, X. F. Transition Metal Catalyzed Carbonylations – Carbonylative Activation of C–X bonds (Springer, 2013).

    Google Scholar 

  31. 31

    Grigg, R. & Mutton, S. P. Pd-catalysed carbonylations: versatile technology for discovery and process chemists. Tetrahedron 66, 5515–5548 (2010).

    CAS  Google Scholar 

  32. 32

    Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds (CRC, 2003).

    Google Scholar 

  33. 33

    Quesnel, J. S. & Arndtsen, B. A. A palladium-catalyzed carbonylation approach to acid chloride synthesis. J. Am. Chem. Soc. 135, 16841–16844 (2013).

    CAS  PubMed  Google Scholar 

  34. 34

    Quesnel, J. S., Kayser, L. V., Fabrikant, A. & Arndtsen, B. A. Acid chloride synthesis by the palladium-catalyzed chlorocarbonylation of aryl bromides. Chem. Eur. J. 21, 9550–9555 (2015).

    CAS  PubMed  Google Scholar 

  35. 35

    Tjutrins, J. & Arndtsen, B. A. An electrophilic approach to the palladium-catalyzed carbonylative C–H functionalization of heterocycles. J. Am. Chem. Soc. 137, 12050–12054 (2015).

    CAS  PubMed  Google Scholar 

  36. 36

    Fang, X., Cacherat, B. & Morandi, B. CO- and HCl-free synthesis of acid chlorides from unsaturated hydrocarbons via shuttle catalysis. Nat. Chem. 9, 1105–1109 (2017).

    CAS  PubMed  Google Scholar 

  37. 37

    Effenberger, F., Eberhard, J. K. & Maier, A. H. The first unequivocal evidence of the reacting electrophile in aromatic acylation reactions. J. Am. Chem. Soc. 118, 12572–12579 (1996).

    CAS  Google Scholar 

  38. 38

    Quesnel, J. S. et al. Computational study of the palladium-catalyzed carbonylative synthesis of aromatic acid chlorides: the synergistic effect of PtBu3 and CO on reductive elimination. Chem. Eur. J. 22, 15107–15118 (2016).

    CAS  PubMed  Google Scholar 

  39. 39

    Lee, S. Y. & Hartwig, J. F. Palladium-catalyzed, site-selective direct allylation of aryl C–H bonds by silver-mediated C–H activation: a synthetic and mechanistic investigation. J. Am. Chem. Soc. 138, 15278–15284 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Whitaker, D., Burés, J. & Larrosa, I. Ag(I)-catalyzed C–H activation: the role of the Ag(I) salt in Pd/Ag-mediated C–H arylation of electron-deficient arenes. J. Am. Chem. Soc. 138, 8384–8387 (2016).

    CAS  PubMed  Google Scholar 

  41. 41

    Lotz, M. D., Camasso, N. M., Canty, A. J. & Sanford, M. S. Role of silver salts in palladium-catalyzed arene and heteroarene C–H functionalization reactions. Organometallics 36, 165–171 (2017).

    CAS  Google Scholar 

  42. 42

    Lapointe, D. & Fagnou, K. Overview of the mechanistic work on the concerted metallation–deprotonation pathway. Chem. Lett. 39, 1118–1126 (2010).

    Google Scholar 

  43. 43

    Effenberger, F. & Maier, A. H. Changing the ortho/para ratio in aromatic acylation reactions by changing reaction conditions: a mechanistic explanation from kinetic measurements. J. Am. Chem. Soc. 123, 3429–3433 (2001).

    CAS  PubMed  Google Scholar 

  44. 44

    Boller, T. M. et al. Mechanism of the mild functionalization of arenes by diboron reagents catalyzed by iridium complexes. intermediacy and chemistry of bipyridine-ligated iridium trisboryl complexes. J. Am. Chem. Soc. 127, 14263–14278 (2005).

    CAS  PubMed  Google Scholar 

  45. 45

    Press, L. P., Kosanovich, A. J., McCulloch, B. J. & Ozerov, O. V. High-turnover aromatic C–H borylation catalyzed by POCOP-type pincer complexes of iridium. J. Am. Chem. Soc. 138, 9487–9497 (2016).

    CAS  PubMed  Google Scholar 

  46. 46

    Obligacion, J. V., Semproni, S. P. & Chirik, P. J. Cobalt-catalyzed C–H borylation. J. Am. Chem. Soc. 136, 4133–4136 (2014).

    CAS  PubMed  Google Scholar 

  47. 47

    Effenberger, F., Epple, G., Eberhard, J. K., Buehler, U. & Sohn, E. Electrophilic aromatic substitution. 24. Carboxylic trifluoromethanesulfonic and methanesulfonic anhydrides synthesis and dissociation tendency. Chem. Ber. 116, 1183–1194 (1983).

    CAS  Google Scholar 

  48. 48

    Kantor, T. G. Ketoprofen: a review of its pharmacologic and clinical properties. Pharmacotherapy 6, 93–102 (1986).

    CAS  PubMed  Google Scholar 

  49. 49

    Keating, G. M. Fenofibrate: a review of its lipid-modifying effects in dyslipidemia and its vascular effects in type 2 diabetes mellitus. Am. J. Cardiovasc. Drugs 11, 227–247 (2011).

    CAS  PubMed  Google Scholar 

  50. 50

    Yin, W., Ma, Y., Xu, J. & Zhao, Y. Microwave-assisted one-pot synthesis of 1-indanones from arenes and α,β-unsaturated acyl chlorides. J. Org. Chem. 71, 4312–4315 (2006).

    CAS  PubMed  Google Scholar 

Download references


We thank Natural Sciences and Engineering Research Council of Canada, the Canadian Foundation for Innovation and the Centre for Green Chemistry and Catalysis (supported by Fonds de recherche du Québec – Nature et Technologies) for funding this research. We thank L. Kayser for the X-ray crystal structure of 3a and to S. Kelley for the X-ray crystal structure of 4b.

Author information




B.A.A. and R.G.K. conceived the project. R.G.K. conducted the majority of the experiments. J.T. assisted in the early experiments. G.M.T. conducted the mechanistic experiments with 4b and assisted with Table 1 and Fig. 4b. N.I.L. and O.K. assisted with Table 1. B.A.A. and R.G.K. prepared the manuscript with feedback from all of the authors.

Corresponding author

Correspondence to Bruce A. Arndtsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8875 kb)

Supplementary information

Crystallographic data for compound 3a (CIF 657 kb)

Supplementary information

Crystallographic data for compound 4b (CIF 4930 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garrison Kinney, R., Tjutrins, J., Torres, G. et al. A general approach to intermolecular carbonylation of arene C–H bonds to ketones through catalytic aroyl triflate formation. Nature Chem 10, 193–199 (2018). https://doi.org/10.1038/nchem.2903

Download citation

Further reading