Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin transition in a four-coordinate iron oxide

Abstract

Spin transition has attracted the interest of researchers in various fields since the early 1930s, with thousands of examples now recognized, including those in minerals and biomolecules. However, so far the metal centres in which it has been found to occur are almost always octahedral six-coordinate 3d4 to 3d7 metals, such as Fe(II). A five-coordinate centre is only rarely seen. Here we report that under pressure SrFe(II)O2, which features a four-fold square-planar coordination, exhibits a transition from high spin (S = 2) to intermediate spin (S = 1). This is accompanied by a transition from an antiferromagnetic insulating state to a ferromagnetic so-called half-metallic state: only half of the spin-down (dxz,dyz) states are filled. These results highlight the square-planar coordinated iron oxides as a new class of magnetic and electric materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lattice anomaly at the spin-state transition.
Figure 2: Transition from high spin to intermediate spin in SrFeO2 under high pressure.
Figure 3: Calculated local density of states of iron in SrFeO2.
Figure 4: Insulator–metal transition at the spin transition.

Similar content being viewed by others

References

  1. Gütlich, P. & Goodwin, H. A. Spin Crossover in Transition Metal Compounds I–III, Vols 233–235 (Springer, 2004).

    Google Scholar 

  2. Kröber, J., Codjovi, E., Kahn, O., Croliére, F. & Jay, C. A spin transition system with a thermal hysteresis at room temperature. J. Am. Chem. Soc. 115, 9810–9811 (1993).

    Article  Google Scholar 

  3. Real, J. A. et al. Spin crossover in a catenane supramolecular system. Science 267, 265–267 (1995).

    Article  Google Scholar 

  4. Badro, J. et al. Iron partitioning in earth's mantle: toward a deep lower mantle discontinuity. Science 300, 789–791 (2003).

    Article  CAS  Google Scholar 

  5. Lin, J.-F. et al. Spin transition of iron in magnesiowüstite in the earth's lower mantle. Nature 436, 377–380 (2005).

    Article  CAS  Google Scholar 

  6. Rueff, J.-P. et al. Pressure-induced high-spin to low-spin transition in FeS evidenced by X-ray emission spectroscopy. Phys. Rev. Lett. 82, 3284–3287 (1999).

    Article  CAS  Google Scholar 

  7. Li, J. et al. Electronic spin state of iron in lower mantle perovskite. Proc. Natl Acad. Sci. USA 101, 14027–14030 (2004).

    Article  CAS  Google Scholar 

  8. Takano, M. et al. Pressure-induced high-spin to low-spin transition in CaFeO3 . Phys. Rev. Lett. 67, 3267–3270 (1991).

    Article  CAS  Google Scholar 

  9. Decurtins, S., Gütlich, P., Köhler, C. P., Spiering, H. & Hauser, A. Light-induced excited spin state trapping in a transition-metal complex: the hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system. Chem. Phys. Lett. 105, 1–4 (1984).

    Article  CAS  Google Scholar 

  10. Qi, Y., Müller, E. W., Spiering, H. & Gütlich, P. The effect of a magnetic field on the high-spin ↔ low-spin transition in [Fe(phen)2(NCS)2]. Chem. Phys. Lett. 101, 505–505 (1983).

    Article  Google Scholar 

  11. Ikeue, T. et al. Saddle-shaped six-coordinate iron(III) porphyrin complexes showing a novel spin crossover between S = 1/2 and S = 3/2 spin state. Angew. Chem. Int. Ed. 40, 2617–2620 (2001).

    Article  Google Scholar 

  12. Halder, G. J., Kepert, C. J., Moubaraki, B., Murray, K. S. & Cashion, J. D. Guest-dependent spin crossover in a nanoporous molecular framework material. Science 298, 1762–1765 (2002).

    Article  CAS  Google Scholar 

  13. Nakano, N., Nakano, K. & Tasaki, A. A magnetic study of acidic ferric hemoglobin. Biochem. Biophys. Acta 251, 301–313 (1971).

    Google Scholar 

  14. Moritomo, Y. et al. Metal–insulator transition induced by a spin-state transition in TbBaCo2O5+δ (δ = 0.5). Phys. Rev. B. 61, R13325–R13328 (2000).

    Article  CAS  Google Scholar 

  15. Tsujimoto, Y. et al. Infinite-layer iron oxide with a square-planar coordination. Nature 450, 1062–1065 (2007).

    Article  CAS  Google Scholar 

  16. Köhler, J. Square-planar coordinated iron in the layered oxoferrate(II) SrFeO2 . Angew. Chem. Int. Ed. 47, 4470–4472 (2008).

    Article  Google Scholar 

  17. Kawakami, T. et al. High-pressure Mössbauer and X-ray powder diffraction studies of SrFeO3 . J. Phys. Soc. Jpn 72, 33–36 (2003).

    Article  CAS  Google Scholar 

  18. Perdew, M., Ernzerhof, M. & Bruke, A. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).

    Article  CAS  Google Scholar 

  19. Paier, J. et al. Screened hybrid density functionals applied to solids. J. Chem. Phys. 124, 154709 (2006).

    Article  CAS  Google Scholar 

  20. Xiang, H. J., Wei, S.-H. & Whangbo, M.-H. Origin of the structural and magnetic anomalies of the layered compound SrFeO2: a density functional investigation. Phys. Rev. Lett. 100, 167207 (2008).

    Article  CAS  Google Scholar 

  21. Pruneda, J. M., Inigquez, J., Canadell, E., Kageyama, H. & Takano, M. Understanding the unique structural and electronic properties of SrFeO2 . Phys. Rev. B 78, 115101 (2008).

    Article  Google Scholar 

  22. Hwang, H. Y. & Cheong, S.-W. Enhanced intergrain tunneling magnetoresistance in half-metallic CrO2 films. Science 278, 1607–1609 (1997).

    Article  CAS  Google Scholar 

  23. Kimura, T. et al. Interplane tunneling magnetoresistance in a layered manganite crystal. Science 274, 1698–1701 (1996).

    Article  CAS  Google Scholar 

  24. Okimoto, Y. et al. Anomalous variation of optical spectra with spin polarization in double-exchange ferromagnet: La1–xSrxMnO3. Phys. Rev. Lett. 75, 109–112 (1995).

    Article  CAS  Google Scholar 

  25. Shimakawa, Y., Kubo, Y. & Manako, T. Giant magnetoresistance in Tl2Mn2O7 with the pyrochlore structure. Nature 379, 53–55 (1996).

    Article  CAS  Google Scholar 

  26. Park, J.-H. et al. Direct evidence for a half-metallic ferromagnet. Nature 794, 794–796 (1998).

    Article  Google Scholar 

  27. Kageyama, H. et al. Spin-ladder iron oxide Sr3Fe2O5 . Angew. Chem. Int. Ed. 47, 5740–5745 (2008).

    Article  CAS  Google Scholar 

  28. Tassel, C. et al. Stability of the infinite layer structure with iron square planar coordination. J. Am. Chem. Soc. 130, 3764–3765 (2008).

    Article  CAS  Google Scholar 

  29. Tassel, C. et al. CaFeO2: a new type of layered structure with iron in a distorted square planar coordination. J. Am. Chem. Soc. 130, 214410–214419 (2008).

    Article  Google Scholar 

  30. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1–xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  CAS  Google Scholar 

  31. Bassett, W. A., Takahashi, T. & Stook, P. W. X-ray diffraction and optical observations on crystalline solids up to 300 kbar. Rev. Sci. Instrum. 38, 37–42 (1967).

    Article  CAS  Google Scholar 

  32. Arora, A. K., Yagi, T., Miyajima, N. & Mary, T. A. Amorphization and decomposition of scandium molybdate at high pressure. J. Appl. Phys. 97, 013508 (2005).

    Article  Google Scholar 

  33. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  34. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  35. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  36. Paier, J., Hirschl, R., Marsman, M. & Kresse, G. The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J. Chem. Phys. 122, 234102 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Science Research on Priority Areas (Novel States of Matter Induced by Frustration) and also partly by the Ministry of Education, Culture, Sports, Science and Technology of Japan. Research at Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and Engineering, US Department of Energy, under contract with UT-Battelle. This research used resources of the National Energy Research Computing Center, which is supported by the Office of Science of the US Department of Energy. This work was supported by the University of Vienna through the University Focus Research Area Materials Science (Multi-scale Simulations of Materials Properties and Processes in Materials).

Author information

Authors and Affiliations

Authors

Contributions

H.K. designed and coordinated the overall study seeking advice from M.T. (experiment) and C.L.F. (theory). N.H. conceived the high-pressure Mössbauer study, and X-Q.C. conceived the theoretical studies. Y.T., with support from K.Y., synthesized the material. T.K., S.S., K.H., Y.S. and Y.M. conducted high-pressure Mössbauer and electrical resistivity experiments, and T.K. analysed the data (with the help of M.T. and S.N.). Y.T., C.T., A.K., T.O. and T.Y. performed high-pressure X-ray diffraction experiments, and Y.T. and C.T. analysed the data. X-Q.C., C.L.F. and R.P. performed the theoretical work and analysis. H.K. and T.K. co-wrote the experimental part and C.L.F. and X-Q.C. co-wrote the theoretical part, with comments from R.P. All contributed to the discussion of the results.

Corresponding author

Correspondence to H. Kageyama.

Supplementary information

Supplementary information

Supplementary information (PDF 738 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawakami, T., Tsujimoto, Y., Kageyama, H. et al. Spin transition in a four-coordinate iron oxide. Nature Chem 1, 371–376 (2009). https://doi.org/10.1038/nchem.289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.289

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing