Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials

Abstract

The advent of antibody–drug conjugates as pharmaceuticals has fuelled a need for reliable methods of site-selective protein modification that furnish homogeneous adducts. Although bioorthogonal methods that use engineered amino acids often provide an elegant solution to the question of selective functionalization, achieving homogeneity using native amino acids remains a challenge. Here, we explore visible-light-mediated single-electron transfer as a mechanism towards enabling site- and chemoselective bioconjugation. Specifically, we demonstrate the use of photoredox catalysis as a platform to selectivity wherein the discrepancy in oxidation potentials between internal versus C-terminal carboxylates can be exploited towards obtaining C-terminal functionalization exclusively. This oxidation potential-gated technology is amenable to endogenous peptides and has been successfully demonstrated on the protein insulin. As a fundamentally new approach to bioconjugation this methodology provides a blueprint toward the development of photoredox catalysis as a generic platform to target other redox-active side chains for native conjugation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoredox-catalysed decarboxylative functionalization as a novel electron transfer mechanism towards site- and chemoselective bioconjugation.
Figure 2: Proposed mechanism for the C-terminal-selective photoredox decarboxylative conjugate addition.
Figure 3: Scope of the photoredox decarboxylative conjugate addition applied to endogenous peptides.
Figure 4: Photoredox-mediated decarboxylative functionalization of human insulin.

Similar content being viewed by others

References

  1. Boutureira, O. & Bernardes, G. J. L. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Krall, N., da Cruz, F. P., Boutureira, O. & Bernardes, G. J. L. Site-selective protein-modification chemistry for basic biology and drug development. Nat. Chem. 8, 103–113 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).

    Article  CAS  Google Scholar 

  4. Saxon, E. & Bertozzi, C. R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Junutula, J. R. et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26, 925–932 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Lyon, R. P., Meyer, D. L., Setter, J. R. & Senter, P. D. Conjugation of anticancer drugs through endogenous monoclonal antibody cysteine resides. Methods Enzymol. 502, 123–138 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Baslé, E., Joubert, N. & Pucheault, M. Protein chemical modification on endogenous amino acids. Chem. Biol. 17, 213–227 (2010).

    Article  PubMed  CAS  Google Scholar 

  8. Miller, S., Janin, J., Lesk, A. M. & Chothia, C. Interior and surface of monomeric proteins. J. Mol. Biol. 196, 641–656 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, X., Muthoosamy, K., Pfisterer, A., Neumann, B. & Weil, T. Site-selective lysine modification of native proteins and peptides via kinetically controlled labelling. Bioconjugate Chem. 23, 500–508 (2012).

    Article  CAS  Google Scholar 

  10. Bader, B. et al. Bioorganic synthesis of lipid-modified proteins for the study of signal transduction. Nature 403, 223–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Rosen, C. B. & Francis, M. B. Targeting the N terminus for site-selective protein modification. Nat. Chem. Biol. 13, 697–705 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Romanini, D. W. & Francis, M. B. Attachment of peptide building blocks to proteins through tyrosine bioconjugation. Bioconjugate Chem. 19, 153–157 (2008).

    Article  CAS  Google Scholar 

  13. Tilley, S. D. & Francis, M. B. Tyrosine-selective protein alkylation using π-allylpalladium complexes. J. Am. Chem. Soc. 128, 1080–1081 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Joshi, N. S., Whitaker, L. R. & Francis, M. B. A three-component Mannich-type reaction for selective tyrosine bioconjugation. J. Am. Chem. Soc. 126, 15942–15943 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Ban, H. et al. Facile and stable linkages through tyrosine: bioconjugation strategies with the tyrosine-click reaction. Bioconjugate Chem. 24, 520–532 (2013).

    Article  CAS  Google Scholar 

  16. Antos, J. M., McFarland, J. M., Iavarone, A. T. & Francis, M. B. Chemoselective tryptophan labeling with rhodium carbenoids at mild pH. J. Am. Chem. Soc. 131, 6301–6308 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Antos, J. M. & Francis, M. B. Selective tryptophan modification with rhodium carbenoids in aqueous solution. J. Am. Chem. Soc. 126, 10256–10257 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Seki, Y. et al. Transition metal-free tryptophan-selective bioconjugation of proteins. J. Am. Chem. Soc. 138, 10798–10801 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597–602 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zuo, Z. & MacMillan, D. W. C. Decarboxylative arylation of α-amino acids via photoredox catalysis: a one-step conversion of biomass to drug pharmacophore. J. Am. Chem. Soc. 136, 5257–5260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chu, L., Ohta, C., Zuo, Z. & MacMillan, D. W. C. Carboxylic acids as a traceless activation group for conjugate additions: a three-step synthesis of (±)-pregabalin. J. Am. Chem. Soc. 136, 10886–10889 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Noble, A. & MacMillan, D. W. C. Photoredox-mediated α-vinylation of α-amino acids and N-aryl amines. J. Am. Chem. Soc. 136, 11602–11605 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zuo, Z. et al. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Galicia, M. & González, F. J. Electrochemical oxidation of tetrabutylammonium salts of aliphatic carboxylic acids in acetonitrile. J. Electrochem. Soc. 149, D46–D50 (2002).

    Article  CAS  Google Scholar 

  25. Hu, Q.-Y., Berti, F. & Adamo, R. Towards the next generation of biomedicines by site-selective conjugation. Chem. Soc. Rev. 45, 1691–1719 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. McGrath, N. A., Andersen, K. A., Davis, A. K. F., Lomax, J. E. & Raines, R. T. Diazo compounds for the bioreversible esterification of proteins. Chem. Sci. 6, 752–755 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Rajagopalan, T. G., Stein, W. H. & Moore, S. The inactivation of pepsin by diazoacetylnorleucine methyl ester. J. Biol. Chem. 241, 4295–4297 (1966).

    Article  CAS  PubMed  Google Scholar 

  28. Delpierre, G. R. & Fruton, J. S. Specific inactivation of pepsin by a diazo ketone. Proc. Natl Acad. Sci. USA 56, 1817–1822 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Totaro, K. A. et al. Systematic investigation of EDC/sNHS-mediated bioconjugation reactions for carboxylated peptide substrates. Bioconj. Chem. 27, 994–1004 (2016).

    Article  CAS  Google Scholar 

  30. Noble, A., McCarver, S. J. & MacMillan, D. W. C. Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides. J. Am. Chem. Soc. 137, 624–627 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Slutskyy, Y. & Overman, L. E. Generation of the methoxycarbonyl radical by visible-light photoredox catalysis and its conjugate addition with electron-deficient olefins. Org. Lett. 18, 2564–2567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. MacDonald, J. I., Munch, H. K., Moore, T. & Francis, M. B. One-step site-specific modification of native proteins with 2-pyridinecarboxyaldehydes. Nat. Chem. Biol. 11, 326–331 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Novak, M., Miller, A., Bruice, T. C. & Tollin, G. The mechanism of flavin 4a substitution which accompanies photolytic decarboxylation of α-substituted acetic acids. Carbanion vs. radical intermediates. J. Am. Chem. Soc. 102, 1465–1467 (1980).

    Article  CAS  Google Scholar 

  34. Islam, S. D. M., Penzkofer, A. & Hegemann, P. Quantum yield of triplet formation of riboflavin in aqueous solution and of flavin mononucleotide bound to the LOV1 domain of Phot1 from Chlamydomonas reinhardtii. Chem. Phys. 291, 97–114 (2003).

    Article  CAS  Google Scholar 

  35. Lu, C. et al. Riboflavin (VB2) photosensitized oxidation of 2′-deoxyguanosine-5′-monophosphate (dGMP) in aqueous solution: a transient intermediates study. Phys. Chem. Chem. Phys. 2, 329–334 (2000).

    Article  CAS  Google Scholar 

  36. Bortolamei, N., Isse, A. A. & Gennaro, A. Estimation of standard reduction potentials of alkyl radicals involved in atom transfer radical polymerization. Electrochim. Acta 55, 8312–8318 (2010).

    Article  CAS  Google Scholar 

  37. Huvaere, K. & Skibsted, L. H. Light-induced oxidation of tryptophan and histidine. Reactivity of aromatic N-heterocycles toward triplet-excited flavins. J. Am. Chem. Soc. 131, 8049–8060 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Harriman, A. Further comments on the redox potentials of tryptophan and tyrosine. J. Phys. Chem. 91, 6102–6104 (1987).

    Article  CAS  Google Scholar 

  39. Stubbe, J. & van der Donk, W. A. Protein radicals in enzyme catalysis. Chem. Rev. 98, 705–762 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Sikorska, E. et al. Spectroscopy and photophysics of lumiflavins and lumichromes. J. Phys. Chem. A 108, 1501–1508 (2004).

    Article  CAS  Google Scholar 

  41. Koziol, J. Studies on flavins in organic solvents – I. Spectral characteristics of riboflavin, riboflavin tetrabutyrate, and lumichrome. Photochem. Photobiol. 5, 41–54 (1966).

    Article  CAS  Google Scholar 

  42. Garbaccio, R. M. in Comprehensive Organic Synthesis II 2nd edn, Vol. 1 (eds Knochell, P. & Molander, G. A.) Ch. 9, 438–462 (Elsevier, 2014).

    CAS  Google Scholar 

  43. Ravelli, D., Zema, M., Mella, M., Fagnoni, M. & Albini, A. Benzoyl radicals from (hetero)aromatic aldehydes. Decatungstate photocatalyzed synthesis of substituted aromatic ketones. Org. Biomol. Chem. 8, 4158–4164 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Wagner, A. & Koniev, O. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev. 44, 5495–5551 (2015).

    Article  PubMed  Google Scholar 

  45. Uchida, K. & Stadtman, E. R. Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc. Natl Acad. Sci. USA 89, 4544–4548 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, Y., Luo, Y. & Zhang, R. Investigation on insulin tyrosine modification mediated by peroxynitrite. In Proc. IEEE/ICME Int. Conf. Complex Chem. Engineering Beijing, Beijing, 1813–1816 (IEEE, 2007).

  47. Lindsay, D. G. & Shall, S. The acetylation of insulin. Biochem. J. 121, 737–745 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support provided by the NIHGMS (R01 01GM093213-04) and gifts from Merck and BMS. D.K.K. acknowledges the Deutsche Forschungsgemeinschaft (DFG) for a postdoctoral fellowship (KO 4867/2-1). The authors thank T. Muir, Z. Brown, R. Thompson and members of the Muir Laboratory for their advice and analytical support. The authors also thank I. Pelczer and K. Conover for assistance with NMR spectroscopy.

Author information

Authors and Affiliations

Authors

Contributions

S.B., C.L. and D.K.K. performed and analysed the experiments. S.B., C.L., D.K.K. and D.W.C.M. designed the experiments and prepared this manuscript. J.X.Q., Y.Z., M.A.P. and W.R.E. provided discussions. J.X.Q. assisted with peptide synthesis.

Corresponding author

Correspondence to David W. C. MacMillan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 14330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloom, S., Liu, C., Kölmel, D. et al. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials. Nature Chem 10, 205–211 (2018). https://doi.org/10.1038/nchem.2888

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2888

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing