Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors

Abstract

A striking feature of living systems is their ability to produce motility by amplification of collective molecular motion from the nanoscale up to macroscopic dimensions. Some of nature's protein motors, such as myosin in muscle tissue, consist of a hierarchical supramolecular assembly of very large proteins, in which mechanical stress induces a coordinated movement. However, artificial molecular muscles have often relied on covalent polymer-based actuators. Here, we describe the macroscopic contractile muscle-like motion of a supramolecular system (comprising 95% water) formed by the hierarchical self-assembly of a photoresponsive amphiphilic molecular motor. The molecular motor first assembles into nanofibres, which further assemble into aligned bundles that make up centimetre-long strings. Irradiation induces rotary motion of the molecular motors, and propagation and accumulation of this motion lead to contraction of the fibres towards the light source. This system supports large-amplitude motion, fast response, precise control over shape, as well as weight-lifting experiments in water and air.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative scheme for the preparation and photoactuation of a macroscopic string.
Figure 2: Light-responsive motion of molecular motor 1.
Figure 3: Electronic microscopies and X-ray analysis of a macroscopic string prepared from 1 on a sapphire substrate.
Figure 4: Photoactuation and thermal reversible process of the molecular motor-based string in aqueous solution.
Figure 5: Photoactuation in air and in situ SAXS of a macroscopic string prepared from 1.
Figure 6: Schematic illustration of the proposed mechanism of photoactuation.

Similar content being viewed by others

References

  1. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  CAS  Google Scholar 

  2. Ueda, J., Schultz, J. A. & Asada, H. Cellular Actuators: Modularity and Variability in Muscle-Inspired Actuation (Butterworth-Heinemann, 2017).

    Google Scholar 

  3. Asaka, K. & Okuzaki, H. Soft Actuators: Materials, Modeling, Applications, and Future Perspectives (Springer, 2014).

    Google Scholar 

  4. Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    Article  CAS  Google Scholar 

  5. Balzani, V., Credi, A. & Venturi, M. Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld (Wiley–VCH, 2008).

    Book  Google Scholar 

  6. Morimoto, M. & Irie, M. A diarylethene cocrystal that converts light into mechanical work. J. Am. Chem. Soc. 132, 14172–14178 (2010).

    Article  CAS  Google Scholar 

  7. Kitagawa, D., Nishi, H. & Kobatake, S. Photoinduced twisting of a photochromic diarylethene crystal. Angew. Chem. Int. Ed. 52, 9320–9322 (2013).

    Article  CAS  Google Scholar 

  8. Ikegami, T., Kageyama, Y., Obara, K. & Takeda, S. Dissipative and autonomous square-wave self-oscillation of a macroscopic hybrid self-assembly under continuous light irradiation. Angew. Chem. Int. Ed. 55, 8239–8243 (2016).

    Article  CAS  Google Scholar 

  9. Kageyama, Y., Ikegami, T., Kurokome, Y. & Takeda, S. Mechanism of macroscopic motion of oleate helical assemblies: cooperative deprotonation of carboxyl groups triggered by photoisomerization of azobenzene derivatives. Chem. Eur. J. 22, 8669–8675 (2016).

    Article  CAS  Google Scholar 

  10. Feringa, B. L. Molecular Switches (Wiley–VCH, 2001).

    Book  Google Scholar 

  11. Spencer, N. & Stoddart, J. F. A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991).

    Article  Google Scholar 

  12. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  13. Natansohn, A. & Rochon, P. Photoinduced motions in azo-containing polymers. Chem. Rev. 102, 4139–4175 (2002).

    Article  CAS  Google Scholar 

  14. Iwaso, K., Takashima, Y. & Harada, A. Fast response dry-type artificial molecular muscles with [c2]daisy chains. Nat. Chem. 8, 626–633 (2016).

    Article  Google Scholar 

  15. Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotech. 10, 161–165 (2015).

    Article  Google Scholar 

  16. Foy, J. T. et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotech. 12, 540–545 (2017).

    Article  CAS  Google Scholar 

  17. Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P. & Aizenberg, J. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 315, 487–490 (2007).

    Article  CAS  Google Scholar 

  18. Ikeda, T., Mamiya, J. & Yu, Y. L. Photomechanics of liquid-crystalline elastomers and other polymers. Angew. Chem. Int. Ed. 46, 506–528 (2007).

    Article  CAS  Google Scholar 

  19. Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P. & Shelley, M. Fast liquid-crystal elastomer swims into the dark. Nat. Mater. 3, 307–310 (2004).

    Article  CAS  Google Scholar 

  20. Van Oosten, C. L., Bastiaansen, C. W. M. & Broer, D. J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat. Mater. 8, 677–682 (2009).

    Article  CAS  Google Scholar 

  21. Iamsaard, S. et al. Conversion of light into macroscopic helical motion. Nat. Chem. 6, 229–235 (2014).

    Article  CAS  Google Scholar 

  22. Lv, J. A. et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature 537, 179–184 (2016).

    Article  CAS  Google Scholar 

  23. Jimenez, M. C., Dietrich-Buchecker, C. & Sauvage, J. P. Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew. Chem. Int. Ed. 39, 3284–3287 (2000).

    Article  CAS  Google Scholar 

  24. Jimenez-Molero, M. C., Dietrich-Buchecker, C. & Sauvage, J. P. Towards artificial muscles at the nanometric level. Chem. Commun. 1613–1616 (2003).

  25. Lehn, J. M. Perspectives in supramolecular chemistry—from molecular recognition towards molecular information-processing and self-organization. Angew. Chem. Int. Ed. 29, 1304–1319 (1990).

    Article  Google Scholar 

  26. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article  CAS  Google Scholar 

  27. Xue, B. et al. Electrically controllable actuators based on supramolecular peptide hydrogels. Adv. Funct. Mater. 26, 9053–9062 (2016).

    Article  CAS  Google Scholar 

  28. Bruns, C. J. & Stoddart, J. F. Rotaxane-based molecular muscles. Acc. Chem. Res. 47, 2186–2199 (2014).

    Article  CAS  Google Scholar 

  29. Collin, J. P., Dietrich-Buchecker, C., Gavina, P., Jimenez-Molero, M. C. & Sauvage, J. P. Shuttles and muscles: linear molecular machines based on transition metals. Acc. Chem. Res. 34, 477–487 (2001).

    Article  CAS  Google Scholar 

  30. Goujon, A. et al. Hierarchical self-assembly of supramolecular muscle-like fibers. Angew. Chem. Int. Ed. 55, 703–707 (2016).

    Article  CAS  Google Scholar 

  31. Goujon, A. et al. Controlled sol–gel transitions by actuating molecular machine based supramolecular polymers. J. Am. Chem. Soc. 139, 4923–4928 (2017).

    Article  CAS  Google Scholar 

  32. Krieg, E., Bastings, M. M. C., Besenius, P. & Rybtchinski, B. Supramolecular polymers in aqueous media. Chem. Rev. 116, 2414–2477 (2016).

    Article  CAS  Google Scholar 

  33. Webber, M. J., Appel, E. A., Meijer, E. W. & Langer, R. Supramolecular biomaterials. Nat. Mater. 15, 13–26 (2016).

    Article  CAS  Google Scholar 

  34. Zhang, S. M. et al. A self-assembly pathway to aligned monodomain gels. Nat. Mater. 9, 594–601 (2010).

    Article  CAS  Google Scholar 

  35. Koumura, N., Geertsema, E. M., van Gelder, M. B., Meetsma, A. & Feringa, B. L. Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. J. Am. Chem. Soc. 124, 5037–5051 (2002).

    Article  CAS  Google Scholar 

  36. Goodby, J. W. et al. Handbook of Liquid Crystals 2nd edn (Wiley-VCH, 2014).

    Book  Google Scholar 

  37. Kim, Y. S. et al. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 14, 1002–1007 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Netherlands Organization for Scientific Research (NWO-CW), the European Research Council (ERC, advanced grant no. 694345 to B.L.F.), the Ministry of Education, Culture and Science (Gravitation Program no. 024.001.035) and a Grant-in-Aid for Scientific Research on Innovative Areas ‘π-Figuration’ (nos. 26102008 and 15K21721) of The Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The synchrotron XRD experiments were performed at BL45XU in SPring-8 with the approval of the RIKEN SPring-8 Center (proposal no. 20160027).

Author information

Authors and Affiliations

Authors

Contributions

B.L.F., F.K.-C.L. and J.C. conceived the research. J.C. and F.K.-C.L. carried out the synthesis of 1. J.C. characterized the motion of the molecular motor. M.C.A.S. performed the cryo-TEM. F.K.-C.L. prepared the string and carried out POM and SEM analysis. F.K.-C.L. and T.K. performed all XRD measurements and structural analysis. J.C. and F.K.-C.L. carried out the actuation experiments. J.C. and E.v.d.G. analysed and calculated the mechanical work. J.C., F.K.-C.L., T.K., T.F. and B.L.F. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ben L. Feringa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2139 kb)

Supplementary information

Supplementary Movie 1 (MP4 8238 kb)

Supplementary information

Supplementary Movie 2 (MP4 5045 kb)

Supplementary information

Supplementary Movie 3 (MP4 9657 kb)

Supplementary information

Supplementary Movie 4 (MP4 4150 kb)

Supplementary information

Supplementary Movie 5 (MP4 4381 kb)

Supplementary information

Supplementary Movie 6 (MP4 1058 kb)

Supplementary information

Supplementary Movie 7 (MP4 3463 kb)

Supplementary information

Supplementary Movie 8 (MP4 7525 kb)

Supplementary information

Supplementary Movie 9 (MP4 4688 kb)

Supplementary information

Supplementary Movie 10 (MP4 5400 kb)

Supplementary information

Supplementary Movie 11 (MP4 3113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Leung, FC., Stuart, M. et al. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nature Chem 10, 132–138 (2018). https://doi.org/10.1038/nchem.2887

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2887

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing