Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A dual role for a polyketide synthase in dynemicin enediyne and anthraquinone biosynthesis

Abstract

Dynemicin A is a member of a subfamily of enediyne antitumour antibiotics characterized by a 10-membered carbocycle fused to an anthraquinone, both of polyketide origin. Sequencing of the dynemicin biosynthetic gene cluster in Micromonospora chersina previously identified an enediyne polyketide synthase (PKS), but no anthraquinone PKS, suggesting gene(s) for biosynthesis of the latter were distant from the core dynemicin cluster. To identify these gene(s), we sequenced and analysed the genome of M. chersina. Sequencing produced a short list of putative PKS candidates, yet CRISPR-Cas9 mutants of each locus retained dynemicin production. Subsequently, deletion of two cytochromes P450 in the dynemicin cluster suggested that the dynemicin enediyne PKS, DynE8, may biosynthesize the anthraquinone. Together with 18O-labelling studies, we now present evidence that DynE8 produces the core scaffolds of both the enediyne and anthraquinone, and provide a working model to account for their formation from the programmed octaketide of the enediyne PKS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of anthraquinone-containing enediynes and comparison of dynemicin A production by wild-type M. chersina and PKS gene deletion strains.
Figure 2: Comparison of enediynes produced by wild-type M. chersina and P450 gene deletion strains.
Figure 3: 13C NMR resonances of oxygen-attached carbons in dynemicin A derivatives.
Figure 4: Working model for enediyne and anthraquinone formation by DynE8.

Similar content being viewed by others

References

  1. Hensens, O. D., Giner, J.-L. & Goldberg, I. H. Biosynthesis of NCS chrom A, the chromophore of the antitumor antibiotic neocarzinostatin. J. Am. Chem. Soc. 111, 3295–3299 (1989).

    Article  CAS  Google Scholar 

  2. Lam, K. S. et al. Biosynthesis of esperamicin A1, an enediyne antitumor antibiotic. J. Am. Chem. Soc. 115, 12340–12345 (1993).

    Article  CAS  Google Scholar 

  3. Liu, W., Christenson, S. D., Standage, S. & Shen, B. Biosynthesis of the enediyne antitumor antibiotic C-1027. Science 297, 1170–1173 (2002).

    Article  CAS  Google Scholar 

  4. Ahlert, J. et al. The calicheamicin gene cluster and its iterative type I enediyne PKS. Science 297, 1173–1176 (2002).

    Article  CAS  Google Scholar 

  5. Zazopoulos, E. et al. A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat. Biotechnol. 21, 187–190 (2003).

    Article  CAS  Google Scholar 

  6. Liu, W. et al. Rapid PCR amplification of minimal enediyne polyketide synthase cassettes leads to a predictive familial classification model. Proc. Natl Acad. Sci. USA 100, 11959–11963 (2003).

    Article  CAS  Google Scholar 

  7. Horsman, G. P., Yihua, C., Thorson, J. S. & Shen, B. Polyketide synthase chemistry does not direct biosynthetic divergence between 9- and 10-membered enediynes. Proc. Natl Acad. Sci. USA 107, 11331–11335 (2010).

    Article  CAS  Google Scholar 

  8. Zhang, J. et al. A phosphopantetheinylating polyketide synthase producing a linear polyene to initiate enediyne antitumor antibiotic biosynthesis. Proc. Natl Acad. Sci. USA 105, 1460–1465 (2008).

    Article  CAS  Google Scholar 

  9. Belecki, K. & Townsend, C. A. Environmental control of the calicheamicin polyketide synthase leads to detection of a programmed octaketide and a proposal for enediyne biosynthesis. Angew. Chem. Int. Ed. 51, 11316–11319 (2012).

    Article  CAS  Google Scholar 

  10. Belecki, K. & Townsend, C. A. Biochemical determination of enzyme-bound metabolites: preferential accumulation of a programmed octaketide on the enediyne polyketide synthase CalE8. J. Am. Chem. Soc. 135, 14339–14348 (2013).

    Article  CAS  Google Scholar 

  11. Liu, W. et al. The neocarzinostatin biosynthetic gene cluster from Streptomyces carzinostaticus ATCC 15944 involving two iterative type I polyketide synthases. Chem. Biol. 12, 293–302 (2005).

    Article  CAS  Google Scholar 

  12. Tokiwa, Y. et al. Biosynthesis of dynemicin A, a 3-ene-1,5-diyne antitumor antibiotic. J. Am. Chem. Soc. 114, 4107–4110 (1992).

    Article  CAS  Google Scholar 

  13. Konishi, M. et al. Dynemicin A, a novel antibiotic with the anthraquinone and 1,5-diyn-3-ene subunit. J. Antibiot. 42, 1449–1452 (1989).

    Article  CAS  Google Scholar 

  14. Gao, Q. & Thorson, J. S. The biosynthetic genes encoding for the production of the dynemicin enediyne core in Micromonospora chersina ATCC53710. FEMS Microbiol. Lett. 282, 105–114 (2008).

    Article  CAS  Google Scholar 

  15. Tahlan, K., Park, H. U. & Jensen, S. E. Three unlinked gene clusters are involved in clavam metabolite biosynthesis in Streptomyces clavuligerus. Can. J. Microbiol. 50, 803–810 (2004).

    Article  CAS  Google Scholar 

  16. Lazos, O. et al. Biosynthesis of the putative siderophore erythrochelin requires unprecedented crosstalk between separate nonribosomal peptide gene clusters. Chem. Biol. 17, 160–173 (2010).

    Article  CAS  Google Scholar 

  17. Davies, J. et al. Uncialamycin, a new enediyne antibiotic. Org. Lett. 7, 5233–5236 (2005).

    Article  CAS  Google Scholar 

  18. Weber, T. et al. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43, W237–W243 (2015).

    Article  CAS  Google Scholar 

  19. Tong, Y., Charusanti, P., Zhang, L., Weber, T. & Lee, S. Y. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 4, 1020–1029 (2015).

    Article  CAS  Google Scholar 

  20. Summers, R. G., Ali, A., Shen, B., Wessel, W. A. & Hutchinson, C. R. Malonyl-coenzyme A:acyl carrier protein acyltransferase of Streptomyces glaucescens: a possible link between fatty acid and polyketide biosynthesis. Biochemistry 34, 9389–9402 (1995).

    Article  CAS  Google Scholar 

  21. Konishi, M. et al. Crystal and molecular structure of dynemicin A: a novel 1,5-diyn-3-ene antitumor antibiotic. J. Am. Chem. Soc. 112, 3715–3716 (1990).

    Article  CAS  Google Scholar 

  22. Vederas, J. C. The use of stable isotopes in biosynthetic studies. Nat. Prod. Rep. 4, 277–337 (1987).

    Article  CAS  Google Scholar 

  23. Belecki, K., Crawford, J. M. & Townsend, C. A. Production of octaketide polyenes by the calicheamicin polyketide synthase CalE8: implications for the biosynthesis of enediyne core structures. J. Am. Chem. Soc. 131, 12564–12566 (2009).

    Article  CAS  Google Scholar 

  24. Yin, H., Xu, L. & Porter, N. A. Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev. 111, 5944–5972 (2011).

    Article  CAS  Google Scholar 

  25. Yan, X. et al. Strain prioritization and genome mining for enediyne natural products. mBio 7, e02104–16 (2016).

    Article  CAS  Google Scholar 

  26. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. Practical Streptomyces Genetics (John Innes Foundation, 2000).

    Google Scholar 

  27. Komatsu, M., Tsuda, M., Ōmura, S., Oikawa, H. & Ikeda, H. Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol. Proc. Natl Acad. Sci. USA 105, 7422–7427 (2008).

    Article  CAS  Google Scholar 

  28. Lam, K. S., Veitch, J. A., Lowe, S. E. & Forenza, S. Effect of neutral resins on the production of dynemicins by Micromonospora chersina. J. Ind. Microbiol. 15, 453–456 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Experimental and Computational Genomics Core at The Johns Hopkins University for sequencing and assembling the M. chersina genome, A. Majumdar, I.P. Mortimer, B. Steinberg, F.B. d'Andrea and C.L. Malbon for NMR, UPLC-ESI-MS, mechanical, synthesis and coding help, respectively, and A.L. Eller for performing preliminary experiments. The authors thank the following for donations: H. Ikeda for E. coli GM2929 hsdS::Tn10 (pUB307::Tn7), Y. Tong, T. Weber and S.Y. Lee for pCRISPR-Cas9 and R.F. Li for obtaining these items, and the Agricultural Research Service for M. chersina NRRL B-24756, J. Stuart at Omega Protein Corporation for fish meal and C. Fischer and J.C. Vederas for use of the O2 fermentation system. This work was supported by National Institutes of Health grants R01 ES001670 and T32 GM080189.

Author information

Authors and Affiliations

Authors

Contributions

D.R.C. and C.A.T. designed the experiments, analysed the data and wrote the manuscript. D.R.C. performed experiments.

Corresponding author

Correspondence to Craig A. Townsend.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1970 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, D., Townsend, C. A dual role for a polyketide synthase in dynemicin enediyne and anthraquinone biosynthesis. Nature Chem 10, 231–236 (2018). https://doi.org/10.1038/nchem.2876

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing