Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media


Water splitting is a promising approach to the efficient and cost-effective production of renewable fuels, but water oxidation remains a bottleneck in its technological development because it largely relies on noble-metal catalysts. Although inexpensive transition-metal oxides are competitive water oxidation catalysts in alkaline media, they cannot compete with noble metals in acidic media, in which hydrogen production is easier and faster. Here, we report a water oxidation catalyst based on earth-abundant metals that performs well in acidic conditions. Specifically, we report the enhanced catalytic activity of insoluble salts of polyoxometalates with caesium or barium counter-cations for oxygen evolution. In particular, the barium salt of a cobalt-phosphotungstate polyanion outperforms the state-of-the-art IrO2 catalyst even at pH < 1, with an overpotential of 189 mV at 1 mA cm–2. In addition, we find that a carbon-paste conducting support with a hydrocarbon binder can improve the stability of metal-oxide catalysts in acidic media by providing a hydrophobic environment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Electrochemical behaviour of Co-POM/CP electrodes.
Figure 2: Comparative electrochemical behaviour of catalyst/CP electrodes in acidic media, highlighting the superior activity of Co-POM modified electrodes for oxygen evolution.
Figure 3: Stability and benchmarking of catalyst/CP electrodes.


  1. 1

    McKone, J. R., Lewis, N. S. & Gray, H. B. Will solar-driven water-splitting devices see the light of day? Chem. Mater. 26, 407–414 (2014).

    CAS  Article  Google Scholar 

  2. 2

    Ursua, A., Gandia, L. M. & Sanchis, P. Hydrogen production from water electrolysis: current status and future trends. Proc. IEEE 100, 410–426 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Staszak-Jirkovsky, J. et al. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 15, 197–203 (2016).

    CAS  Article  Google Scholar 

  4. 4

    Andreiadis, E. S. et al. Molecular engineering of a cobalt based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions. Nat. Chem. 5, 48–53 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Hinnemnann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalysts for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    Article  Google Scholar 

  6. 6

    McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Harriman, A., Pickering, I. J., Thomas, J. M. & Christensen, P. A. Metal-oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J. Chem. Soc. Faraday Trans. 84, 2795–2806 (1988).

    CAS  Article  Google Scholar 

  8. 8

    Sardar, K. et al. Water-splitting electrocatalysis in acid conditions using ruthenate-iridate pyrochlores. Angew. Chem. Int. Ed. 53, 10960–10964 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Harriman, A. Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry. Phil. Trans. R. Soc. A 371, 20110415 (2013).

    Article  Google Scholar 

  10. 10

    Yu, E. H., Wang, X., Krewer, U., Li, L. & Scott, K. Direct oxidation alkaline fuel cells: from materials to systems. Energy Environ. Sci. 5, 5668–5680 (2012).

    CAS  Article  Google Scholar 

  11. 11

    Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 134, 377–384 (1987).

    CAS  Article  Google Scholar 

  12. 12

    Trotochaud, L., Ranney, J. K., Williams, K. N. & Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253–17261 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Smith, R. D. L. et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340, 60–63 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Gerken, J. B., Shaner, S. E., Massé, R. C., Porubsky, N. J. & Stahl, S. S. A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni–Fe oxides containing a third metal. Energy Environ. Sci. 7, 2376–2382 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Galan-Mascaros, J. R. Water oxidation at electrodes modified with earth-abundant transition-metal catalysts. ChemElectroChem 2, 37–50 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Suntivich, J., May, J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    CAS  Article  Google Scholar 

  18. 18

    McCrory, C. C. L., Jung, S., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013).

    CAS  Article  Google Scholar 

  19. 19

    Gorlin, M. et al. Tracking catalyst redox states and reaction dynamics in Ni–Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 139, 2070–2082 (2017).

    Article  Google Scholar 

  20. 20

    Gerken, J. B. et al. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 133, 14431–14442 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Surendranath, Y., Lutterman, D. A., Liu, Y. & Nocera, D. G. Nucleation, growth, and repair of a cobalt-based oxygen evolving catalyst. J. Am. Chem. Soc. 134, 6326–6336 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Huynh, M., Bediako, D. K. & Nocera, D. G. A functionally stable manganese oxide oxygen evolution catalyst in acid. J. Am. Chem. Soc. 136, 6002–6010 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Frydendal, R., Paoli, E. A., Chorkendorff, I., Rossmeisl, J. & Stephens, I. E. L. Toward an active and stable catalyst for oxygen evolution in acidic media: Ti-stabilized MnO2 . Adv. Energy Mater. 5, 1500991 (2015).

    Article  Google Scholar 

  25. 25

    Mondschein, J. S. et al. Crystalline cobalt oxide films for sustained electrocatalytic oxygen evolution under strong acidic conditions. Chem. Mater. 29, 950–957 (2017).

    CAS  Article  Google Scholar 

  26. 26

    Bloor, L. G., Molina, P. I., Symes, M. D. & Cronin, L. Low pH electrolytic water splitting using earth-abundant metastable catalysts that self-assemble in situ. J. Am. Chem. Soc. 136, 3304–3311 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Yin, Q. et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328, 342–345 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Lv, H. J. et al. An exceptionally fast homogeneous carbon-free cobalt-based water oxidation catalyst. J. Am. Chem. Soc. 136, 9268–9271 (2014).

    CAS  Article  Google Scholar 

  29. 29

    Lv, H. J. et al. Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 41, 7572–7589 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Goberna-Ferron, S., Vigara, L., Soriano-Lopez, J. & Galan-Mascaros, J. R. Identification of a nonanuclear {CoII9} polyoxometalate cluster as a homogeneous catalysts for water oxidation. Inorg. Chem. 51, 11707–11715 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Stracke, J. J. & Finke, R. C. Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10–: identification of heterogeneous CoOx as the dominant catalyst. J. Am. Chem. Soc. 133, 14872–14875 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Natali, M. et al. Is [Co4(H2O)2([α]-PW9O34)2]10– a genuine molecular catalyst in photochemical water oxidation? Answers from time-resolved hole scavenging experiments. Chem. Commun. 48, 8808–8810 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Stracke, J. J. & Finke, R. C. Water oxidation catalysis beginning with 2.5 μM [Co4(H2O)2(PW9O34)2]10−: investigation of the true electrochemically driven catalyst at ≥600 mV overpotential at a glassy carbon electrode. ACS Catal. 3, 1209–1219 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Vickers, J. W. et al. Differentiating homogeneous and heterogeneous water oxidation catalysis: confirmation that [Co4(H2O)2(α-PW9O34)2]10– is a molecular water oxidation catalyst. J. Am. Chem. Soc. 135, 14110–14118 (2013).

    CAS  Article  Google Scholar 

  35. 35

    Stracke, J. J. & Finke, R. C. Water oxidation catalysis beginning with Co4(H2O)2(PW9O34)210– when driven by the chemical oxidant ruthenium(III)tris(2,2′-bipyridine): stoichiometry, kinetic, and mechanistic studies en route to identifying the true catalyst. ACS Catal. 4, 79–89 (2014).

    CAS  Article  Google Scholar 

  36. 36

    Natali, M. et al. Photo-assisted water oxidation by high-nuclearity cobalt-oxo cores: tracing the catalyst fate during oxygen evolution turnover. Green Chem. 19, 2416–2426 (2017).

    CAS  Article  Google Scholar 

  37. 37

    Goberna-Ferrón, S., Soriano-López, J., Galán-Mascarós, J. R. & Nyman, M. Solution speciation and stability of cobalt-polyoxometalate water oxidation catalysts by X-ray scattering. Eur. J. Inorg. Chem. 2015, 2833–2840 (2015).

    Article  Google Scholar 

  38. 38

    Soriano-López, J. et al. Cobalt polyoxometalates as heterogeneous water oxidation catalysts. Inorg. Chem. 52, 4753–4755 (2013).

    Article  Google Scholar 

  39. 39

    Huynh, M., Shi, C., Billinge, S. J. L. & Nocera, D. G. Nature of activated manganese oxide for oxygen evolution. J. Am. Chem. Soc. 137, 14887–14904 (2015).

    CAS  Article  Google Scholar 

  40. 40

    Kushner-Lenhoff, M. N., Blakemore, J. D., Schley, N. D., Crabtree, R. H. & Brudvig, G. W. Effects of aqueous buffers on electrocatalytic water oxidation with an iridium oxide material electrodeposited in thin layers from an organometallic precursor. Dalton Trans. 42, 3617–3622 (2013).

    CAS  Article  Google Scholar 

  41. 41

    Ouattara, L., Fierro, S., Frey, O., Koudelka, M. & Comninellis, C. Electrochemical comparison of IrO2 prepared by anodic oxidation of pure iridium and IrO2 prepared by thermal decomposition of H2IrCl6 precursor solution. J. Appl. Electrochem. 39, 1361–1367 (2009).

    CAS  Article  Google Scholar 

  42. 42

    Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016).

    CAS  Article  Google Scholar 

  43. 43

    Ahn, H. S. & Tilley, T. D. Electrocatalytic water oxidation at neutral pH by a nanostructured Co(PO3)2 anode. Adv. Funct. Mater. 23, 227–233 (2013).

    CAS  Article  Google Scholar 

  44. 44

    Carraro, M., Sandei, L., Sartorel, A., Scorrano, G. & Bonchio, M. Hybrid polyoxotungstates as second-generation POM-based catalysts for microwave-assisted H2O2 activation. Org. Lett. 8, 3671–3674 (2006).

    CAS  Article  Google Scholar 

  45. 45

    Berardi, S. et al. Polyoxometalate-based N-heterocyclic carbene (NHC) complexes for palladium-mediated C–C coupling and chloroaryl dehalogenation catalysis. Chem. Eur. J. 16, 10662–10666 (2010).

    CAS  Article  Google Scholar 

  46. 46

    Galan-Mascaros, J. R., Gomez-Garcia, C. J., Borras, J. J. & Coronado, E. High nuclearity magnetic clusters: magnetic properties of a nine cobalt cluster encapsulated in a polyoxometalate [Co9(OH2)3(HO)3(HPO4)2(PW9O34)3]16–. Adv. Mater. 6, 221–223 (1994).

    CAS  Article  Google Scholar 

Download references


This work was supported by the European Union (project ERC StG, grant CHEMCOMP, no. 279313), the Spanish Ministerio de Economía y Competitividad (MINECO; through projects CTQ2015-71287-R, CTQ2014-52774-P and the Severo Ochoa Excellence Accreditation 2014-2018 SEV-2013-0319), the Generalitat de Catalunya (2014-SGR-797 and 2014SGR-199) and the CERCA Programme/Generalitat de Catalunya. J.M.P. acknowledges the ICREA Foundation for an ICREA Academia award. M.B.A. acknowledges the Generalitat Catalana (AGAUR) for a predoctoral fellowship. The authors also thank Á. Reyes-Carmona for discussions.

Author information




J.R.G.-M. proposed the concept. J.R.G.-M., M.B.-A. and J.S.-L. designed the experiments. M.B.-A. and J.S.-L. performed the experiments. All authors participated in data analysis and co-wrote the manuscript.

Corresponding author

Correspondence to J. R. Galan-Mascaros.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4309 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blasco-Ahicart, M., Soriano-López, J., Carbó, J. et al. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media. Nature Chem 10, 24–30 (2018). https://doi.org/10.1038/nchem.2874

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing